Skip to main content

Life on the Move: Modeling the Effects of Climate-Driven Range Shifts with Integrodifference Equations

  • Chapter
  • First Online:
Dispersal, Individual Movement and Spatial Ecology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2071))

Abstract

Climate change is causing many species to shift their ranges. We analyze an integrodifference equation that combines growth, dispersal, and a shifting habitat in order to assess the impact of climate change on persistence. We apply this model to butterflies and show that over-dispersal and under-dispersal can both lead to extinction. We focus on the critical range-shift speed (for extinction), survey numerical methods for determining this speed, and introduce new analytic approximations for the critical shift speed. Finally, we apply our numerical methods and analytic approximations to a variety of redistribution kernels and show that critical-speed curves shed light on the complicated effects of dispersal on persistence in a changing climatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.C. Allee, The Social Life of Animals (Norton, New York, 1938)

    Book  Google Scholar 

  2. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J.D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK User’s Guide (Society for Industrial and Applied Mathematics, Philadelphia, 1999)

    Book  MATH  Google Scholar 

  3. R.D. Badinelli, Approximating probability density functions and their convolutions using orthogonal polynomials. Eur. J. Oper. Res. 95, 211–230 (1996)

    Article  MATH  Google Scholar 

  4. M. Bakkenes, J. Alkemade, F. Ihle, R. Leemans, J. Latour, Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob. Change Biol. 8, 390–407 (2002)

    Article  Google Scholar 

  5. H. Berestycki, O. Diekmann, C.J. Nagelkerke, P.A. Zegeling, Can a species keep pace with a shifting climate? Bull. Math. Biol. 71, 399–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.P. Berg, E.T. Kiers, G. Driessen, M. Van Der Heijden, B.W. Kooi, F. Kuenen, M. Liefting, H.A. Verhoef, J. Ellers, Adapt or disperse: understanding species persistence in a changing world. Glob. Change Biol. 16, 587–598 (2010)

    Article  Google Scholar 

  7. A.S. Best, K. Johst, T. Münkemüller, J.M. Travis, Which species will succesfully track climate change? The influence of intraspecific competition and density dependent dispersal on range shifting dynamics. Oikos 116, 1531–1539 (2007)

    Google Scholar 

  8. R.J.H. Beverton, S.J. Holt, On the Dynamics of Exploited Fish Populations (Her Majesty’s Stationery Office, London, 1957)

    Google Scholar 

  9. R.P. Brent, Algorithms for Minimization Without Derivatives (Prentice-Hall, Englewood Cliffs, 1973)

    MATH  Google Scholar 

  10. J.K.M. Brown, M.S. Hovmoller, Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541 (2002)

    Article  Google Scholar 

  11. L.B. Buckley, Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am. Nat. 171, E1–E19 (2008)

    Article  MathSciNet  Google Scholar 

  12. M.B. Bush, H. Hooghiemstra, Tropical biotic responses to climate change, in Climate Change and Biodiversity, ed. by T.E. Lovejoy, L. Hannah (Yale University Press, New Haven, 2005), pp. 125–137

    Google Scholar 

  13. I.C. Chen, J.J. Shiu, B. Suzan, J.D. Holloway, V.K. Chey, H.S. Barlow, J.K. Hill, C.D. Thomas, Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl. Acad. Sci. USA 106, 1479–1483 (2009)

    Article  Google Scholar 

  14. I. Chuine, Why does phenology drive species distribution? Phil. Trans. R. Soc. B 365, 3149–3160 (2010)

    Article  Google Scholar 

  15. R. Cousens, C. Dytham, R. Law, Dispersal in Plants: A Population Perspective (Oxford University Press, Oxford, 2008)

    Book  Google Scholar 

  16. R.D. Cousens, When will plant morphology affect the shape of a seed dispersal “kernel”? J. Theor. Biol. 211, 229–238 (2001)

    Article  Google Scholar 

  17. M.J.R. Cowley, C.D. Thomas, D.B. Roy, R.J. Wilson, J.L. Leon-Cortes, D. Gutierrez, C.R. Bulman, R.M. Quinn, D. Moss, K.J. Gaston, Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. J. Anim. Ecol. 70, 410–425 (2001)

    Google Scholar 

  18. C.C. Craig, On the frequency function of xy. Ann. Math. Stat. 7, 1–15 (1936)

    Article  Google Scholar 

  19. L.M. Delves, J. Walsh, Numerical Solution of Integral Equations (Clarendon Press, Oxford, 1974)

    MATH  Google Scholar 

  20. R. Engler, A. Guisan, MIGCLIM: predicting plant distribution and dispersal in a changing climate. Divers. Distrib. 15, 590–601 (2009)

    Article  Google Scholar 

  21. B. Epstein, Some applications of the Mellin transform in statistics. Ann. Math. Stat. 19, 370–379 (1948)

    Article  MATH  Google Scholar 

  22. B.D.L. Fitt, P.H. Gregory, A.D. Todd, H.A. McCartney, O.C. MacDonald, Spore dispersal and plant disease gradients: a comparison between two empirical models. J. Phytopathol. 118, 227–242 (1987)

    Article  Google Scholar 

  23. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Aiken, M. Booth, F. Rossi, GNU Scientific Library: Reference Manual (Network Theory Ltd., Bristol, 2009)

    Google Scholar 

  24. K.J. Gaston, The Structure and Dynamics of Geographic Ranges (Oxford University Press, Oxford, 2003)

    Google Scholar 

  25. A. Guisan, W. Thuiller, Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005)

    Article  Google Scholar 

  26. P. Hall, Comparison of two orthogonal series methods of estimating a density and its derivatives on an interval. J. Multivar. Anal. 12, 432–449 (1982)

    Article  MATH  Google Scholar 

  27. S. Harrison, D. Murphy, P. Ehrlich, Distribution of the bay checkerspot butterfly, Euphydryas editha bayensis: Evidence for a metapopulation model. Am. Nat. 132, 360–382 (1988)

    Article  Google Scholar 

  28. A. Hastings, K. Higgins, Persistence of transients in spatially structured ecological models. Science 263, 1133–1136 (1994)

    Article  Google Scholar 

  29. R. Hickling, D.B. Roy, J.K. Hill, R. Fox, C.D. Thomas, The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12, 450–455 (2006)

    Article  Google Scholar 

  30. O. Honnay, K. Verheyen, J. Butaye, H. Jacquemyn, B. Bossuyt, M. Hermy, Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecol. Lett. 5, 525–530 (2002)

    Article  Google Scholar 

  31. T. Horiguchi, Y. Fukui, A variation of the Jentzsch theorem for a symmetric integral kernel and its application. Interdiscip. Inf. Sci. 2, 139–144 (1996)

    MathSciNet  MATH  Google Scholar 

  32. B. Huntley, North temperate responses, in Climate Change and Biodiversity, ed. by T. Lovejoy, L. Hannah (Yale University Press, New Haven, 2005), pp. 109–124

    Google Scholar 

  33. V. Hutson, J.S. Pym, Applications of Functional Analysis and Operator Theory (Academic, London, 1980)

    MATH  Google Scholar 

  34. IPCC, Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team and R.K. Pachauri, A. Reisinger, IPCC, Geneva (2007)

    Google Scholar 

  35. D. Jackson, The Theory of Approximation (American Mathematical Society, New York, 1930)

    MATH  Google Scholar 

  36. C. Jeffree, E. Jeffree, Redistribution of the potential geographical ranges of mistletoe and Colorado beetle in Europe in response to the temperature component of climate change. Funct. Ecol. 10, 562–577 (1996)

    Article  Google Scholar 

  37. R. Jentzsch, Über integralgleichungen mit positivem kern. J. die Reine Angew. Math. 141, 235–244 (1912)

    MATH  Google Scholar 

  38. S. Karlin, The existence of eigenvalues for integral operators. Trans. Am. Math. Soc. 113, 1–17 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  39. A.E. Kelly, M.L. Goulden, Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 105, 11823–11826 (2008)

    Article  Google Scholar 

  40. A. Komonen, A. Grapputo, V. Kaitala, J.S. Kotiaho, J. Päivinen, The role of niche breadth, resource availability and range position on the life history of butterflies. Oikos 105, 41–54 (2004)

    Article  Google Scholar 

  41. M. Kot, W.M. Schaffer, Discrete-time growth-dispersal models. Math. Biosci. 80, 109–136 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Kot, M.A. Lewis, P. Van Den Driessche, Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042 (1996)

    Article  Google Scholar 

  43. S. Kotz, T.J. Kozubowski, K. Podgorski, The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance (Birkhauser, Boston, 2001)

    Book  MATH  Google Scholar 

  44. E. Kreyszig, Introductory Functional Analysis with Applications (Wiley, New York, 1978)

    MATH  Google Scholar 

  45. S. Krzemiński, Comment on ‘A simple proof of the Perron–Frobenius theorem for positive symmetric matrices’. J. Phys. A. Math. Gen. 10, 1437–1438 (1977)

    Article  MATH  Google Scholar 

  46. H. Kschwendt, Numerical solution of integral equations using Legendre polynomials. J. Math. Phys. 10, 1964–1968 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Latore, P. Gould, A.M. Mortimer, Spatial dynamics and critical patch size of annual plant populations. J. Theor. Biol. 190, 277–285 (1998)

    Article  Google Scholar 

  48. T.T. Lee, Y.F. Chang, Solutions of convolution integral and integral equations via double general orthogonal polynomials. Int. J. Syst. Sci. 19, 415–430 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Lenoir, J.C. Gégout, P.A. Marquet, P. de Ruffray, H. Brisse, A significant upward shift in plant species optimum elevation during the 20th Century. Science 320, 1768–1771 (2008)

    Article  Google Scholar 

  50. T.M. Letcher, Climate Change: Observed Impacts on Planet Earth (Elsevier, Amsterdam, 2009)

    Google Scholar 

  51. M.A. Lewis, M.G. Neubert, H. Caswell, J.S. Clark, K. Shea, A guide to calculating discrete-time invasion rates from data, in Conceptual Ecology and Invasions Biology: Reciprocal Approaches to Nature, ed. by M.W. Cadotte, S.M. McMahon, T. Fukami (Springer, Dordrecht, 2006), pp. 169–192

    Chapter  Google Scholar 

  52. X.B. Li, F.Q. Gong, A method for fitting probability distributions to engineering properties of rock masses using Legendre orthogonal polynomials. Struct. Saf. 31, 335–343 (2009)

    Article  Google Scholar 

  53. S. Loarie, P. Duffy, H. Hamilton, G.P. Asner, C.B. Field, D.D. Ackerly, The velocity of climate change. Nature 462(24), 1052–1055 (2009)

    Article  Google Scholar 

  54. D.R. Lockwood, A. Hastings, L.W. Botsford, The effects of dispersal patterns on marine reserves: does the tail wag the dog? Theor. Popul. Biol. 61, 297–309 (2002)

    Article  Google Scholar 

  55. F. Lutscher, Density-dependent dispersal in integrodifference equations. J. Math. Biol. 56, 499–524 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. F. Lutscher, M.A. Lewis, Spatially-explicit matrix models. J. Math. Biol. 48, 293–324 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  57. F. Lutscher, E. Pachepsky, M.A. Lewis, The effect of dispersal patterns on stream populations. SIAM J. Appl. Math. 65, 1305–1327 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. L.V. Madden, G. Hughes, F. van den Bosch, The Study of Plant Disease Epidemics (American Phytopathological Society, St. Paul, 2007)

    Google Scholar 

  59. J. McCarty, Ecological consequences of recent climate change. Conserv. Biol. 15, 320–331 (2001)

    Article  Google Scholar 

  60. T.E.X. Miller, B. Tenhumberg, Contributions of demography and dispersal parameters to the spatial spread of a stage-structured insect invasion. Ecol. Appl. 20, 620–633 (2010)

    Article  Google Scholar 

  61. D. Murphy, N. Wahlberg, I. Hanski, P.R. Ehrlich, Introducing checkerspots: Taxonomy and ecology, in On the Wings of Checkerspots: A Model System for Population Biology, ed. by P.R. Ehrlich, I. Hanski (Oxford University Press, Oxford, 2004), pp. 17–33

    Google Scholar 

  62. M.G. Neubert, H. Caswell, Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81, 1613–1628 (2000)

    Article  Google Scholar 

  63. M.G. Neubert, M. Kot, M.A. Lewis, Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Popul. Biol. 48, 7–43 (1995)

    Article  MATH  Google Scholar 

  64. P. Opdam, D. Wascher, Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 117, 285–297 (2004)

    Article  Google Scholar 

  65. W.A. Ozinga, C. Römermann, R.M. Bekker, A. Prinzing, W.L.M. Tamis, J.H.J. Schaminée, S.M. Hennekens, K. Thompson, P. Poschlod, M. Kleyer, J.P. Bakker, J.M. van Groenendael, Dispersal failure contributes to plant losses in NW Europe. Ecol. Lett. 12, 66–74 (2009)

    Article  Google Scholar 

  66. C. Parmesan, Climate and species’ range. Nature 382, 765–766 (1996)

    Article  Google Scholar 

  67. C. Parmesan, Detection at multiple levels: Euphydryas editha and climate change, in Climate Change and Biodiversity, ed. by T.E. Lovejoy, L. Hannah (Yale University Press, New Haven, 2005), pp. 56–60

    Google Scholar 

  68. C. Parmesan, Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006)

    Article  Google Scholar 

  69. C. Parmesan, G. Yohe, A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003)

    Article  Google Scholar 

  70. C. Parmesan, N. Ryrholm, C. Stefanescu, J. Hill, C. Thomas, H. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. Tennent, J. Thomas, M. Warren, Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999)

    Article  Google Scholar 

  71. A.L. Perry, P.J. Low, J.R. Ellis, J.D. Reynolds, Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005)

    Article  Google Scholar 

  72. A.B. Potapov, M.A. Lewis, Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull. Math. Biol. 66, 975–1008 (2004)

    Article  MathSciNet  Google Scholar 

  73. J. Pöyry, M. Luoto, R.K. Heikkinen, M. Kuussaari, K. Saarinen, Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009)

    Article  Google Scholar 

  74. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  75. R.B. Primack, S.L. Miao, Dispersal can limit local plant distribution. Conserv. Biol. 6, 513–519 (1992)

    Article  Google Scholar 

  76. G. Sansone, Orthogonal Functions (Dover Publications, Mineola, 2004)

    Google Scholar 

  77. F.M. Schurr, G.F. Midgley, A.G. Rebelo, G. Reeves, P. Poschlod, S.I. Higgins, Colonization and persistence ability explain the extent to which plant species fill their potential range. Glob. Ecol. Biogeogr. 16, 449–459 (2007)

    Article  Google Scholar 

  78. M.W. Schwartz, Modelling effects of habitat fragmentation on the ability of trees to respond to climatic warming. Biodivers. Conserv. 2, 51–61 (1992)

    Article  Google Scholar 

  79. O. Schweiger, J. Settele, O. Kudrna, S. Klotz, I. Kühn, Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008)

    Article  Google Scholar 

  80. T.A. Severini, Elements of Distribution Theory (Cambridge University Press, New York, 2005)

    Book  MATH  Google Scholar 

  81. M. Shaw, Modeling stochastic processes in plant pathology. Annu. Rev. Phytopathol. 32, 523–544 (1994)

    Article  Google Scholar 

  82. M.W. Shaw, Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline exponentially with distance. Proc. R. Soc. Lond. B 259, 243–248 (1995)

    Article  Google Scholar 

  83. C.A. Smith, I. Giladi, Y.S. Lee, A reanalysis of competing hypotheses for the spread of the California sea otter. Ecology 90, 2503–2512 (2009)

    Article  Google Scholar 

  84. V. Stevens, C. Turlure, M. Baguette, A meta-analysis of dispersal in butterflies. Biol. Rev. 85, 625–642 (2010)

    Google Scholar 

  85. M.T. Tinker, D.F. Doak, J.A. Estes, Using demography and movement behavior to predict range expansion of the southern sea otter. Ecol. Appl. 18, 1781–1794 (2008)

    Article  Google Scholar 

  86. A. Trakhtenbrot, R. Nathan, G. Perry, D.M. Richardson, The importance of long-distance dispersal in biodiversity conservation. Divers. Distrib. 11, 173–181 (2005)

    Article  Google Scholar 

  87. J.M. Travis, Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc. R. Soc. Lond. B 270, 467–473 (2003)

    Article  Google Scholar 

  88. R.W. Van Kirk, M.A. Lewis, Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol. 59, 107–137 (1997)

    Article  MATH  Google Scholar 

  89. R.W. Van Kirk, M.A. Lewis, Edge permeability and population persistence in isolated habitat patches. Nat. Resour. Model. 12, 37–64 (1999)

    Article  MATH  Google Scholar 

  90. G. Walther, E. Post, P. Convey, A. Menzel, C. Parmesan, T. Beebee, J. Fromentin, O. Hoegh-Guldberg, F. Bairlein, Ecological responses to recent climate change. Nature 416, 389–395 (2002)

    Article  Google Scholar 

  91. M.L. Wanga, R.Y. Changa, S.Y. Yanga, Double generalized orthogonal polynomial series for the solution of integral equations. Int. J. Syst. Sci. 19, 459–470 (1988)

    Article  Google Scholar 

  92. S. Yalcinbas, M. Aynigul, T. Akkaya, Legendre series solutions of Fredholm integral equations. Math. Comput. Appl. 15, 371–381 (2010)

    MathSciNet  MATH  Google Scholar 

  93. Y. Zhou, M. Kot, Discrete-time growth-dispersal models with shifting species ranges. Theor. Ecol. 4, 13–25 (2011)

    Article  Google Scholar 

  94. Y. Zhou, M. Kot, The role of the modified Bessel distribution in dispersal models (2013) (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, Y., Kot, M. (2013). Life on the Move: Modeling the Effects of Climate-Driven Range Shifts with Integrodifference Equations. In: Lewis, M., Maini, P., Petrovskii, S. (eds) Dispersal, Individual Movement and Spatial Ecology. Lecture Notes in Mathematics(), vol 2071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35497-7_9

Download citation

Publish with us

Policies and ethics