Skip to main content

Emergence and Propagation of Patterns in Nonlocal Reaction-Diffusion Equations Arising in the Theory of Speciation

  • Chapter
  • First Online:
Dispersal, Individual Movement and Spatial Ecology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2071))

Abstract

Emergence and propagation of patterns in population dynamics is related to the process of speciation, appearance of new biological species. This process will be studied with a nonlocal reaction-diffusion equation where the integral term describes nonlocal consumption of resources. This equation can have several stationary points and, as it is already well known, a travelling wave solution which provides a transition between them. It is also possible that one of these stationary points loses its stability resulting in appearance of a stationary periodic in space structure. In this case, we can expect a possible transition between a stationary point and a periodic structure. The main goal of this work is to study such transitions. The loss of stability of the stationary point signifies that the essential spectrum of the operator linearized about the wave intersects the imaginary axis. Contrary to the usual Hopf bifurcation where a pair of isolated complex conjugate eigenvalues crosses the imaginary axis, here a periodic solution may not necessarily emerge. To describe dynamics of solutions, we need to consider two transitions: a steady wave with a constant speed between two stationary points, and a periodic wave between the stationary point which loses its stability and the periodic structure which appears around it. Both of these waves propagate in space, each one with its own speed. If the speed of the steady wave is greater, then it runs away from the periodic wave, and they propagate independently one after another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We cannot directly use the theorem because the nonlinear operator does not satisfy a Lipschitz condition. This is the reason why we suppose in addition the existence of a mild solution.

References

  1. S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays. J. Differ. Equat. 232, 104–133 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Apreutesei, A. Ducrot, V. Volpert, Competition of species with intra-specific competition. Math. Model. Nat. Phenom. 3, 1–27 (2008)

    Article  MathSciNet  Google Scholar 

  3. A. Apreutesei, A. Ducrot, V. Volpert, Travelling waves for integro-differential equations in population dynamics. Discrete Cont. Dyn. Syst. Ser. B 11, 541–561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter, Spatial structures and generalized travelling waves for an integro-differential equation. DCDS B 13(3), 537–557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Atamas, Self-organization in computer simulated selective systems. Biosystems 39, 143–151 (1996)

    Article  Google Scholar 

  6. M. Beck, A. Ghazaryan, B. Sandstede, Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities. J. Differ. Equat. 246, 4371–4390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Berestycki, G. Nadin, B. Perthame, L. Ryzkik, The non-local Fisher-KPP equation: traveling waves and steady states. Nonlinearity 22(12), 2813–2844 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. N.F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math. 6, 1663–1688 (1990)

    Article  MathSciNet  Google Scholar 

  9. N. Champagnat, R. Ferriere, S. Meleard, Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol. 69(3), 297–321 (2006)

    Article  MATH  Google Scholar 

  10. J.A. Coyne, H.A. Orr, Speciation (Sinauer Associates, Sunderland, 2004)

    Google Scholar 

  11. C. Darwin, On the Origin of Species by means of Natural Selection (John Murray, London, 1859)

    Google Scholar 

  12. L. Desvillettes, C. Prevost, R. Ferriere, Infinite dimensional reaction-diffusion for population dynamics. Preprint no. 2003–04 du CMLA, ENS Cachan

    Google Scholar 

  13. L. Desvillettes, P.E. Jabin, S. Mischler, G. Raoul. On selection dynamics for continuous structured populations. Commun. Math. Sci. 6(3), 729–747 (2008)

    MathSciNet  MATH  Google Scholar 

  14. U. Dieckmann, M. Doebeli, On the origin of species by sympatric speciation. Nature 400, 354–357 (1999)

    Article  Google Scholar 

  15. M. Doebeli, H.J. Blok, O. Leimar, U. Dieckmann, Multimodal pattern formation in phenotype distributions of sexual populations. Proc. R. Soc. B 274, 347–357 (2007)

    Article  Google Scholar 

  16. A. Ducrot, Travelling wave solutions for a scalar age-structured equation. Discrete Contin. Dyn. Syst. Ser. B 7, 251–273 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. R.A. Fisher, The wave of advance of advantageous genes. Ann. Eug. 7, 355–369 (1937)

    Article  Google Scholar 

  18. S. Gavrilets, Fitness Landscape and the Origin of Species (Princeton University Press, Princeton, 2004)

    Google Scholar 

  19. S. Genieys, V. Volpert, P. Auger, Adaptive dynamics: modelling Darwin’s divergence principle. Comptes Rendus Biologies 329(11), 876–879 (2006)

    Article  Google Scholar 

  20. S. Genieys, V. Volpert, P. Auger, Pattern and waves for a model in population dynamics with nonlocal consumption of resources. Math. Model. Nat. Phenom. 1, 63–80 (2006)

    Article  MathSciNet  Google Scholar 

  21. S. Genieys, N. Bessonov, V. Volpert, Mathematical model of evolutionary branching. Math. Comput. Modell. (2008). doi: 10/1016/j.mcm.2008.07.023

    Google Scholar 

  22. A. Ghazaryan, B. Sandstede, Nonlinear convective instability of turing-unstable fronts near onset: a case study. SIAM J. Appl. Dyn. Syst. 6(2), 319–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. A.N. Gorban, Selection theorem for systems with inheritance. Math. Model. Nat. Phenom. 2(4), 1–45 (2007)

    Article  MathSciNet  Google Scholar 

  24. S.A. Gourley, Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41, 272–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. S.A. Gourley, M.A.J. Chaplain, F.A. Davidson, Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dyn. Syst. 16(2), 173–192 (2001)

    MathSciNet  MATH  Google Scholar 

  26. D. Henry, Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, vol. 840 (Springer, New York, 1981)

    Google Scholar 

  27. A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov, L’étude de l’équation de la chaleur avec croissance de la quantité de matière et son application à un problème biologique. Bull. Moskov. Gos. Univ. Mat. Mekh. 1(6), 1–25 (1937)

    Google Scholar 

  28. B. Perthame, S. Genieys, Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit. Math. Model. Nat. Phenom. 2(4), 135–151 (2007)

    Article  MathSciNet  Google Scholar 

  29. S. Pigolotti, C. Lopez, E. Hernandez-Garcia, Species clustering in competitive Lotka-Volterra models. Phys. Rev. Lett. 98, 258101 (2007)

    Article  Google Scholar 

  30. V. Volpert, Elliptic partial differential equations. Fredholm Theory of Elliptic Problems in Unbounded Domains, vol. 1 (Birkhauser, Basel, 2011)

    Google Scholar 

  31. V. Volpert, S. Petrovskii, Reaction-diffusion waves in biology. Phys. Life Rev. 6, 267–310 (2009)

    Article  Google Scholar 

  32. A.I. Volpert, Vit. Volpert, Vl. Volpert, Traveling wave solutions of parabolic systems. Translation of Mathematical Monographs, vol. 140 (American Mathematical Society, Providence, 1994)

    Google Scholar 

Download references

Acknowledgements

The first author was supported by the grant no. 14.740.11.0877 of the Ministry of Education and Research of Russian Federation, “Investigation of Spatial and Temporal Structures in Fluids with Applications to Mathematical Biology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Volpert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Volpert, V., Vougalter, V. (2013). Emergence and Propagation of Patterns in Nonlocal Reaction-Diffusion Equations Arising in the Theory of Speciation. In: Lewis, M., Maini, P., Petrovskii, S. (eds) Dispersal, Individual Movement and Spatial Ecology. Lecture Notes in Mathematics(), vol 2071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35497-7_12

Download citation

Publish with us

Policies and ethics