Skip to main content

Robustness for Compositional Data

  • Chapter
Robustness and Complex Data Structures

Abstract

Compositional data, data containing relative rather than absolute information, need to be transformed to the usual Euclidean geometry before the standard statistical tools can be applied. Different possible transformations and their properties are discussed. For robust multivariate methods based on a robust covariance estimation, it is crucial to use a transformation that avoids singularity issues. Moreover, the robust location and covariance estimators need to be affine equivariant in order to obtain invariance of the results from the transformation used. Here, different robust multivariate methods are discussed for compositional data analysis, like principal component and discriminant analysis, and applied to a data set from geochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitchison, J. (1986). The statistical analysis of compositional data. London: Chapman and Hall.

    Book  MATH  Google Scholar 

  • Aitchison, J., & Greenacre, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society. Series C. Applied Statistics, 51, 375–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Aitchison, J., & Kay, J. W. (1999). Possible solutions of some essential zero problems in compositional data analysis. Available at http://dugi-doc.udg.edu/bitstream/10256/652/1/Aitchison_Kay.pdf. Cited in March 12, 2012.

  • Eaton, M. (1983). Multivariate statistics. A vector space approach. New York: Wiley.

    MATH  Google Scholar 

  • Egozcue, J. J. (2009). Reply to “On the Harker Variation Diagrams;…” by J.A. Cortés. Mathematical Geosciences, 41, 829–834.

    Article  MATH  Google Scholar 

  • Egozcue, J. J., & Pawlowsky-Glahn, V. (2005). Groups of parts and their balances in compositional data analysis. Mathematical Geology, 37, 795–828.

    Article  MathSciNet  MATH  Google Scholar 

  • Egozcue, J. J., & Pawlowsky-Glahn, V. (2006). Simplicial geometry for compositional data. In A. Buccianti, G. Mateu-Figueras, & V. Pawlowsky-Glahn (Eds.), Compositional data in the geosciences: from theory to practice (pp. 145–160). London: Geological Society.

    Google Scholar 

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279–300.

    Article  MathSciNet  Google Scholar 

  • Filzmoser, P., & Hron, K. (2008). Outlier detection for compositional data using robust methods. Mathematical Geosciences, 40, 233–248.

    Article  MATH  Google Scholar 

  • Filzmoser, P., & Hron, K. (2009). Correlation analysis for compositional data. Mathematical Geosciences, 41, 905–919.

    Article  MathSciNet  MATH  Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics, 20, 621–635.

    Article  MathSciNet  Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2012a). Interpretation of multivariate outliers for compositional data. Computational Geosciences, 39, 77–85.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., & Templ, M. (2012b). Discriminant analysis for compositional data and robust parameter estimation. Computational Statistics doi:10.1007/s00180-011-0279-8.

    Google Scholar 

  • Fišerová, E., & Hron, K. (2011). On interpretation of orthonormal coordinates for compositional data. Mathematical Geosciences, 43, 455–468.

    Article  Google Scholar 

  • Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453–467.

    Article  MathSciNet  MATH  Google Scholar 

  • Hron, K., Filzmoser, P., & Thompson, K. (2012). Linear regression with compositional explanatory variables. Journal of Applied Statistics, 39, 1115–1128.

    Article  MathSciNet  Google Scholar 

  • Hron, K., Templ, M., & Filzmoser, P. (2010). Imputation of missing values for compositional data using classical and robust methods. Computational Statistics & Data Analysis, 54, 3095–3107.

    Article  MathSciNet  Google Scholar 

  • Johnson, R., & Wichern, D. (2007). Applied multivariate statistical analysis (6th ed.). London: Prentice-Hall.

    MATH  Google Scholar 

  • Maronna, R., Martin, R. D., & Yohai, V. J. (2006). Robust statistics: theory and methods. New York: Wiley.

    Book  MATH  Google Scholar 

  • Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P., & Palarea-Albaladejo, J. (2012). Model-based replacement of rounded zeros in compositional data: classical and robust approaches. Computational Statistics & Data Analysis, 56, 2688–2704.

    Article  MathSciNet  MATH  Google Scholar 

  • Mateu-Figueras, G., & Pawlowsky-Glahn, V. (2008). A critical approach to probability laws in geochemistry. Mathematical Geosciences, 40, 489–502.

    Article  MATH  Google Scholar 

  • Pawlowsky-Glahn, V., & Buccianti, A. (2011). Compositional data analysis: theory and applications. Chichester: Wiley.

    Book  Google Scholar 

  • Pawlowsky-Glahn, V., & Egozcue, J. J. (2002). BLU estimators and compositional data. Mathematical Geology, 34, 259–274.

    Article  MathSciNet  MATH  Google Scholar 

  • R Development Core Team (2012). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Reimann, C., Arnoldussen, A., Boyd, R., Finne, T. E., Koller, F., Nordgullen, O., & Englmair, P. (2007). Element contents in leaves of four plant species (birch, mountain ash, fern and spruce) along anthropogenic and geogenic concentration gradients. Science of the Total Environment, 377, 416–433.

    Article  Google Scholar 

  • Rousseeuw, P., & Van Driessen, K. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41, 212–223.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the Operational Program Education for Competitiveness—European Social Fund (project CZ.1.07/2.3.00/20.0170 of the Ministry of Education, Youth and Sports of the Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Filzmoser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Filzmoser, P., Hron, K. (2013). Robustness for Compositional Data. In: Becker, C., Fried, R., Kuhnt, S. (eds) Robustness and Complex Data Structures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35494-6_8

Download citation

Publish with us

Policies and ethics