Advertisement

Propagation and Replication of Misfolded SOD1: Implications for Amyotrophic Lateral Sclerosis

  • Anne BertolottiEmail author
Chapter
  • 772 Downloads
Part of the Research and Perspectives in Alzheimer's Disease book series (ALZHEIMER)

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressive motor neuron disease, with 50 % of patients dying within 1.5 years of symptoms onset. The clinical manifestations are heterogeneous in ALS, as the region of onset of muscle weakness varies between individuals. Regardless of the site of onset, the symptoms of ALS begin in one discrete body region in 98 % of the cases. Subsequently, symptoms inevitably progress to regions contiguous to the site of onset where they appear with decreasing severity. These unique clinical features suggest that neurodegeneration in ALS is an orderly and propagating process. At the molecular level, it is now well recognized that protein misfolding plays a central role in both familial and sporadic ALS. Recently, it was found that mutant SOD1, the major component of the protein deposits in familial forms of ALS, propagates misfolding from cell to cell and replicates its misfolding conformation indefinitely, just like prions do. This phenomenon could provide the molecular basis of the focality and spreading of muscle weakness in ALS, as well as the cell autonomous and non-cell autonomous processes in ALS.

Keywords

Amyotrophic Lateral Sclerosis Motor Neuron Disease Mutant SOD1 Sporadic Amyotrophic Lateral Sclerosis Familial Amyotrophic Lateral Sclerosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392PubMedCrossRefGoogle Scholar
  2. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, Goolsby H, Fontaine BA, Lemay N, McKenna-Yasek D, Frosch MP, Agar JN, Julien JP, Brady ST, Brown RHJ (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13:1396–1403PubMedCrossRefGoogle Scholar
  3. Charcot JM (1890) Lecons sur les Maladies due Systeme Nerveux, 3 vols. Bureau du Progres Medical, Paris, 1894Google Scholar
  4. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913PubMedCrossRefGoogle Scholar
  5. Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RHJ, Julien JP, Goldstein LS, Cleveland DW (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117PubMedCrossRefGoogle Scholar
  6. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232PubMedCrossRefGoogle Scholar
  7. Danzer KM, Krebs SK, Wolff M, Birk G, Hengerer B (2009) Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology. J Neurochem 111: 192–203PubMedCrossRefGoogle Scholar
  8. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015PubMedCrossRefGoogle Scholar
  9. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902PubMedCrossRefGoogle Scholar
  10. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852PubMedCrossRefGoogle Scholar
  11. Gowers WR (1892) Manual of diseases of the nervous system, vol I. J. & A. Churchill, LondonGoogle Scholar
  12. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775PubMedCrossRefGoogle Scholar
  13. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, Song S, Likhite S, Murtha MJ, Foust KD, Rao M, Eagle A, Kammesheidt A, Christensen A, Mendell JR, Burghes AH, Kaspar BK (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29:824–828PubMedCrossRefGoogle Scholar
  14. Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K, Li JY, Brundin P (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121: 715–725PubMedCrossRefGoogle Scholar
  15. Jacobsson J, Jonsson PA, Andersen PM, Forsgren L, Marklund SL (2001) Superoxide dismutase in CSF from amyotrophic lateral sclerosis patients with and without CuZn-superoxide dismutase mutations. Brain 124:1461–1466PubMedCrossRefGoogle Scholar
  16. Johnston JA, Dalton MJ, Gurney ME, Kopito RR (2000) Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 97:12571–12576PubMedCrossRefGoogle Scholar
  17. Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 70:532–540PubMedCrossRefGoogle Scholar
  18. Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwarz RD, Roher AE, Walker LC (2000) Evidence for seeding of beta-amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J Neurosci 20:3606–3611PubMedGoogle Scholar
  19. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955PubMedCrossRefGoogle Scholar
  20. Lagier-Tourenne C, Cleveland DW (2009) Rethinking ALS: the FUS about TDP-43. Cell 136: 1001–1004PubMedCrossRefGoogle Scholar
  21. Malinowski DP, Fridovich I (1979) Subunit association and side-chain reactivities of bovine erythrocyte superoxide dismutase in denaturing solvents. Biochemistry 18:5055–5060PubMedCrossRefGoogle Scholar
  22. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784PubMedCrossRefGoogle Scholar
  23. Mondola P, Ruggiero G, Seru R, Damiano S, Grimaldi S, Garbi C, Monda M, Greco D, Santillo M (2003) The Cu, Zn superoxide dismutase in neuroblastoma SK-N-BE cells is exported by a microvesicles dependent pathway. Mol Brain Res 110:45–51PubMedCrossRefGoogle Scholar
  24. Munch C, Bertolotti A (2010) Exposure of hydrophobic surfaces initiates aggregation of diverse ALS-causing superoxide dismutase-1 mutants. J Mol Biol 399:512–525PubMedCrossRefGoogle Scholar
  25. Munch C, Bertolotti A (2011) Self-propagation and transmission of misfolded mutant SOD1: prion or prion-like phenomenon? Cell Cycle 10:1711PubMedCrossRefGoogle Scholar
  26. Munch C, Bertolotti A (2012) Propagation of the prion phenomenon: beyond the seeding principle. J Mol Biol 421(4–5):491–498PubMedCrossRefGoogle Scholar
  27. Munch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553PubMedCrossRefGoogle Scholar
  28. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622PubMedCrossRefGoogle Scholar
  29. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMedCrossRefGoogle Scholar
  30. Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811PubMedCrossRefGoogle Scholar
  31. Ravits J, Laurie P, Fan Y, Moore DH (2007a) Implications of ALS focality: rostral-caudal distribution of lower motor neuron loss postmortem. Neurology 68:1576–1582PubMedCrossRefGoogle Scholar
  32. Ravits J, Paul P, Jorg C (2007b) Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology 68:1571–1575PubMedCrossRefGoogle Scholar
  33. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RHJ, Scott RW, Snider WD (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47PubMedCrossRefGoogle Scholar
  34. Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225PubMedCrossRefGoogle Scholar
  35. Shaw BF, Valentine JS (2007) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem Sci 32:78–85PubMedCrossRefGoogle Scholar
  36. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, Miller CC, Nicholson G, Shaw CE (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672PubMedCrossRefGoogle Scholar
  37. Urushitani M, Sik A, Sakurai T, Nukina N, Takahashi R, Julien JP (2006) Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 9:108–118PubMedCrossRefGoogle Scholar
  38. Urushitani M, Ezzi SA, Julien JP (2007) Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 104:2495–2500PubMedCrossRefGoogle Scholar
  39. Valentine JS, Doucette PA, Zittin Potter S (2005) Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 74:563–593PubMedCrossRefGoogle Scholar
  40. Volpicelli-Daley LA, Patel TP, Luk KC, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71PubMedCrossRefGoogle Scholar
  41. Wang J, Farr GW, Zeiss CJ, Rodriguez-Gil DJ, Wilson JH, Furtak K, Rutkowski DT, Kaufman RJ, Ruse CI, Yates JR, Perrin S, Feany MB, Horwich AL (2009) Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS. Proc Natl Acad Sci USA 106:1392–1397PubMedCrossRefGoogle Scholar
  42. Weser U, Miesel R, Hartmann HJ (1989) Mummified enzymes. Nature 341:696PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.MRC Laboratory of Molecular BiologyCambridgeUK

Personalised recommendations