Advertisement

Amyloid-β Transmissibility

  • C. Duran-Aniotz
  • R. Morales
  • I. Moreno-Gonzalez
  • C. SotoEmail author
Chapter
  • 786 Downloads
Part of the Research and Perspectives in Alzheimer's Disease book series (ALZHEIMER)

Abstract

Alzheimer’s disease (AD) is the most common type of dementia in the elderly population. This disorder is histopathologically characterized by the presence of cerebral deposits of fibrillar aggregates consisting of amyloid-β protein (Aβ). Aβ aggregates have been characterized in detail, placing them as the main factors responsible for the deleterious clinical features observed in this disease. Interestingly, protein misfolding and aggregation are the predominant pathological events in several other diseases known as protein misfolding disorders (PMDs). PMDs include AD, Parkinson’s disease, Huntington’s disease, type-2 diabetes and Transmissible Spongiform Encephalopathies, or prion diseases, among others. Prion diseases are a group of disorders that can be transmitted by a proteinaceous infectious material termed prion. Compelling studies have demonstrated the infectious properties of misfolded prion aggregates that replicate following a seeding-nucleation mechanism. Recent experiments performed in animal models of diverse PMDs have shown that misfolded aggregates can induce the disease process by a prion-like mechanism, revealing a potential infectious origin for some of these diseases. In this chapter, we will review the recent studies showing that AD-like pathology can be induced in a similar way to prion diseases.

Keywords

Amyotrophic Lateral Sclerosis Amyloid Precursor Protein Prion Disease Cerebral Amyloid Angiopathy Infectious Prion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguzzi A, Calella AM (2009) Prions: protein aggregation and infectious diseases. Physiol Rev 89:1105–1152PubMedCrossRefGoogle Scholar
  2. Aguzzi A, Brandner S, Sure U, Ruedi D, Isenmann S (1994) Transgenic and knock-out mice: models of neurological disease. Brain Pathol 4:3–20PubMedCrossRefGoogle Scholar
  3. Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C, Migheli A, Crowther RA, Ghetti B, Spillantini MG, Goedert M (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340–9351PubMedGoogle Scholar
  4. Alzheimer A (1907) Uber eine eigenartige Erkrankung der Hirnrinde. Allg Zeitschr Psych Gerichtl Med 64:146–148Google Scholar
  5. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639PubMedCrossRefGoogle Scholar
  6. Baker HF, Ridley RM, Duchen LW, Crow TJ, Bruton CJ (1994) Induction of beta (A4)-amyloid in primates by injection of Alzheimer’s disease brain homogenate. Comparison with transmission of spongiform encephalopathy. Mol Neurobiol 8:25–39PubMedCrossRefGoogle Scholar
  7. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031PubMedCrossRefGoogle Scholar
  8. Blake CC, Serpell LC, Sunde M, Sandgren O, Lundgren E (1996) A molecular model of the amyloid fibril. Ciba Found Symp 199:6–15PubMedGoogle Scholar
  9. Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19:939–945PubMedCrossRefGoogle Scholar
  10. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259CrossRefGoogle Scholar
  11. Brandt R, Hundelt M, Shahani N (2005) Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim Biophys Acta 1739:331–354PubMedCrossRefGoogle Scholar
  12. Brayne C (2007) The elephant in the room – healthy brains in later life, epidemiology and public health. Nat Rev Neurosci 8:233–239PubMedCrossRefGoogle Scholar
  13. Brendza RP, Bales KR, Paul SM, Holtzman DM (2002) Role of apoE/Abeta interactions in Alzheimer’s disease: insights from transgenic mouse models. Mol Psychiatry 7:132–135PubMedCrossRefGoogle Scholar
  14. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191PubMedCrossRefGoogle Scholar
  15. Brown P, Preece M, Brandel JP, Sato T, McShane L, Zerr I, Fletcher A, Will RG, Pocchiari M, Cashman NR, Preece M, Brandel JP, Sato T, McShane L, Zerr I, Fletcher A, Will RG, Pocchiari M, Cashman NR, d’Aignaux JH, Cervenáková L, Fradkin J, Schonberger LB, Collins SJ (2000) Iatrogenic Creutzfeldt-Jakob disease at the millennium. Neurology 55:1075–1081PubMedCrossRefGoogle Scholar
  16. Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11:301–307PubMedCrossRefGoogle Scholar
  17. Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, Staufenbiel M, Sommer B, Jucker M (1998) Neuron loss in APP transgenic mice. Nature 395:755–756PubMedCrossRefGoogle Scholar
  18. Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH, Abramowski D, Sturchler-Pierrat C, Sommer B, Staufenbiel M, Jucker M (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA 96:14088–14093PubMedCrossRefGoogle Scholar
  19. Chapman PF, Falinska AM, Knevett SG, Ramsay MF (2001) Genes, models and Alzheimer’s disease. Trends Genet 17:254–261PubMedCrossRefGoogle Scholar
  20. Cheon M, Favrin G, Chang I, Dobson CM, Vendruscolo M (2008) Calculation of the free energy barriers in the oligomerisation of Abeta peptide fragments. Front Biosci 13:5614–5622PubMedCrossRefGoogle Scholar
  21. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2004) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8:79–84PubMedCrossRefGoogle Scholar
  22. Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM (2010) Synergistic interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci 30:7281–7289PubMedCrossRefGoogle Scholar
  23. Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550PubMedCrossRefGoogle Scholar
  24. Creuztfeldt H (1920) Über eine eigenartige herdförmige Erkrankung des Zentralnervensystems. Z Ges Neurol Psychiat 57:1–18CrossRefGoogle Scholar
  25. de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697PubMedCrossRefGoogle Scholar
  26. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015PubMedCrossRefGoogle Scholar
  27. Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383:710–713PubMedCrossRefGoogle Scholar
  28. Eisele YS, Bolmont T, Heikenwalder M, Langer F, Jacobson LH, Yan ZX, Roth K, Aguzzi A, Staufenbiel M, Walker LC, Jucker M (2009) Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci USA 106:12926–12931PubMedCrossRefGoogle Scholar
  29. Eisele YS, Obermuller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, Walker LC, Staufenbiel M, Heikenwalder M, Jucker M (2010) Peripherally applied A{beta}-containing inoculates induce cerebral beta-amyloidosis. Science 330:980–982PubMedCrossRefGoogle Scholar
  30. Frost B, Diamond MI (2010) Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 11:155–159PubMedGoogle Scholar
  31. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852PubMedCrossRefGoogle Scholar
  32. Gajdusek DC, Gibbs CJ Jr, Alpers M (1967) Transmission and passage of experimental “kuru” to chimpanzees. Science 155:212–214PubMedGoogle Scholar
  33. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–527PubMedCrossRefGoogle Scholar
  34. Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27:570–575PubMedCrossRefGoogle Scholar
  35. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890PubMedCrossRefGoogle Scholar
  36. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706PubMedCrossRefGoogle Scholar
  37. Goudsmit J, Morrow CH, Asher DM, Yanagihara RT, Masters CL, Gibbs CJ Jr, Gajdusek DC (1980) Evidence for and against the transmissibility of Alzheimer disease. Neurology 30:945–950PubMedCrossRefGoogle Scholar
  38. Grad LI, Guest WC, Yanai A, Pokrishevsky E, O’Neill MA, Gibbs E, Semenchenko V, Yousefi M, Wishart DS, Plotkin SS, Cashman NR (2011) Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc Natl Acad Sci USA 108:16398–16403PubMedCrossRefGoogle Scholar
  39. Griffith JS (1967) Self-replication and scrapie. Nature 215:1043–1044PubMedCrossRefGoogle Scholar
  40. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089PubMedGoogle Scholar
  41. Guo JL, Lee VM (2011) Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286:15317–15331PubMedCrossRefGoogle Scholar
  42. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112PubMedCrossRefGoogle Scholar
  43. Hardy J (1992) An ‘anatomical cascade hypothesis’ for Alzheimer’s disease. Trends Neurosci 15:200–201PubMedCrossRefGoogle Scholar
  44. Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282:1075–1079PubMedCrossRefGoogle Scholar
  45. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102PubMedCrossRefGoogle Scholar
  46. Jakob A (1921) Über eigenartige Erkrankungen des Zentralnervensystems mit bemerkenswertenanatomischen Befunde (Spastische Pseudosklerose-Encephalomyelopathie mit disseminiertenDegenerationsherden). Z Ges Neurol Psychiat 64:147–228CrossRefGoogle Scholar
  47. Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058PubMedCrossRefGoogle Scholar
  48. Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 70:532–540PubMedCrossRefGoogle Scholar
  49. Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwarz RD, Roher AE, Walker LC (2000) Evidence for seeding of beta -amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J Neurosci 20:3606–3611PubMedGoogle Scholar
  50. Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21:372–381PubMedGoogle Scholar
  51. Kimberlin RH, Walker CA (1979) Pathogenesis of mouse scrapie: dynamics of agent replication in spleen, spinal cord and brain after infection by different routes. J Comp Pathol 89:551–562PubMedCrossRefGoogle Scholar
  52. Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224PubMedCrossRefGoogle Scholar
  53. Koo EH, Lansbury PT Jr, Kelly JW (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci USA 96:9989–9990PubMedCrossRefGoogle Scholar
  54. Langer F, Eisele YS, Fritschi SK, Staufenbiel M, Walker LC, Jucker M (2011) Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition. J Neurosci 31:14488–14495PubMedCrossRefGoogle Scholar
  55. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357PubMedCrossRefGoogle Scholar
  56. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, Crowley AC, Fu YH, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–977PubMedCrossRefGoogle Scholar
  57. Luheshi LM, Crowther DC, Dobson CM (2008) Protein misfolding and disease: from the test tube to the organism. Curr Opin Chem Biol 12:25–31PubMedCrossRefGoogle Scholar
  58. Manuelidis EE, de Figueiredo JM, Kim JH, Fritch WW, Manuelidis L (1988) Transmission studies from blood of Alzheimer disease patients and healthy relatives. Proc Natl Acad Sci USA 85:4898–4901PubMedCrossRefGoogle Scholar
  59. McAlister V (2005) Sacred disease of our times: failure of the infectious disease model of spongiform encephalopathy. Clin Invest Med 28:101–104PubMedGoogle Scholar
  60. McGeer PL, McGeer EG (2007) NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 28:639–647PubMedCrossRefGoogle Scholar
  61. McGowan E, Eriksen J, Hutton M (2006) A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet 22:281–289PubMedCrossRefGoogle Scholar
  62. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jato AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784PubMedCrossRefGoogle Scholar
  63. Morales R, Green KM, Soto C (2009) Cross currents in protein misfolding disorders: interactions and therapy. CNS Neurol Disord Drug Targets 8:363–371PubMedCrossRefGoogle Scholar
  64. Morales R, Duran-Aniotz C, Castilla J, Estrada LD, Soto C (2012) De novo induction of amyloid-beta deposition in vivo. Mol Psychiatry 17(12):1347–1353. doi:10.1038/mp. 2011.120 PubMedCrossRefGoogle Scholar
  65. Mougenot AL, Nicot S, Bencsik A, Morignat E, Verchere J, Lakhdar L, Legastelois S, Baron T (2012) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33:2225–2228PubMedCrossRefGoogle Scholar
  66. Munch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553PubMedCrossRefGoogle Scholar
  67. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van EL, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140PubMedCrossRefGoogle Scholar
  68. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421PubMedCrossRefGoogle Scholar
  69. Price JL, McKeel DW Jr, Buckles VD, Roe CM, Xiong C, Grundman M, Hansen LA, Petersen RC, Parisi JE, Dickson DW, Smith CD, Davis DG, Schmitt FA, Markesbery WR, Kaye J, Kurlan R, Hulette C, Kurland BF, Higdon R, Kukull W, Morris JC (2009) Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging 30:1026–1036PubMedCrossRefGoogle Scholar
  70. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144PubMedCrossRefGoogle Scholar
  71. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383PubMedCrossRefGoogle Scholar
  72. Reed MN, Hofmeister JJ, Jungbauer L, Welzel AT, Yu C, Sherman MA, Lesne S, LaDu MJ, Walsh DM, Ashe KH, Cleary JP (2011) Cognitive effects of cell-derived and synthetically derived Abeta oligomers. Neurobiol Aging 32:1784–1794PubMedCrossRefGoogle Scholar
  73. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7:137–152PubMedCrossRefGoogle Scholar
  74. Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225PubMedCrossRefGoogle Scholar
  75. Rockenstein E, Crews L, Masliah E (2007) Transgenic animal models of neurodegenerative diseases and their application to treatment development. Adv Drug Deliv Rev 59:1093–1102PubMedCrossRefGoogle Scholar
  76. Rosen RF, Fritz JJ, Dooyema J, Cintron AF, Hamaguchi T, Lah JJ, LeVine H III, Jucker M, Walker LC (2012) Exogenous seeding of cerebral beta-amyloid deposition in betaAPP-transgenic rats. J Neurochem 120:660–666PubMedCrossRefGoogle Scholar
  77. Roses AD, Saunders AM (1994) APOE is a major susceptibility gene for Alzheimer’s disease. Curr Opin Biotechnol 5:663–667PubMedCrossRefGoogle Scholar
  78. Saunders SE, Bartelt-Hunt SL, Bartz JC (2008) Prions in the environment: occurrence, fate and mitigation. Prion 2:162–169PubMedCrossRefGoogle Scholar
  79. Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonso ME, Potter H, Heston LL, Martin GM (1992) Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 258:668–671PubMedCrossRefGoogle Scholar
  80. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189PubMedGoogle Scholar
  81. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875PubMedCrossRefGoogle Scholar
  82. Sigurdson CJ, Aguzzi A (2006) Chronic wasting disease. Biochim Biophys Acta 1772:610–618PubMedGoogle Scholar
  83. Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437:257–261PubMedCrossRefGoogle Scholar
  84. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4:49–60PubMedCrossRefGoogle Scholar
  85. Soto C (2004) Diagnosing prion diseases: needs, challenges and hopes. Nat Rev Microbiol 2:809–819PubMedCrossRefGoogle Scholar
  86. Soto C (2011) Prion hypothesis: the end of the controversy? Trends Biochem Sci 36:151–158PubMedCrossRefGoogle Scholar
  87. Soto C (2012a) In vivo spreading of tau pathology. Neuron 73:621–623PubMedCrossRefGoogle Scholar
  88. Soto C (2012b) Transmissible proteins: expanding the prion heresy. Cell 149:968–977PubMedCrossRefGoogle Scholar
  89. Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 31:150–155PubMedCrossRefGoogle Scholar
  90. Stöhr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB, Giles K (2012) Purified and synthetic Alzheimer’s amyloid beta (Aβ) prions. Proc Natl Acad Sci USA 109(27):11025–11030PubMedCrossRefGoogle Scholar
  91. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292PubMedCrossRefGoogle Scholar
  92. Thomas PJ, Qu B-H, Pedersen PL (1995) Defective protein folding as a basis of human disease. Trends Biochem Sci 20:456–459PubMedCrossRefGoogle Scholar
  93. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572:477–492PubMedCrossRefGoogle Scholar
  94. Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, Cui B, Mucke L (2010) Tau reduction prevents Abeta-induced defects in axonal transport. Science 330:198PubMedCrossRefGoogle Scholar
  95. Walker LC, Callahan MJ, Bian F, Durham RA, Roher AE, Lipinski WJ (2002) Exogenous induction of cerebral beta-amyloidosis in betaAPP-transgenic mice. Peptides 23:1241–1247PubMedCrossRefGoogle Scholar
  96. Walsh DM, Selkoe DJ (2007) A beta oligomers – a decade of discovery. J Neurochem 101:1172–1184PubMedCrossRefGoogle Scholar
  97. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Duran-Aniotz
    • 1
    • 2
  • R. Morales
    • 1
  • I. Moreno-Gonzalez
    • 1
  • C. Soto
    • 1
    Email author
  1. 1.Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of NeurologyUniversity of Texas Houston Medical SchoolHoustonUSA
  2. 2.Universidad de los AndesFacultad de MedicinaLas CondesChile

Personalised recommendations