Structure-Activity Relationship of Amyloids

  • Jason Greenwald
  • Roland RiekEmail author
Part of the Research and Perspectives in Alzheimer's Disease book series (ALZHEIMER)


Amyloids are highly ordered, cross-β-sheet protein aggregates. The unique cross-β-sheet entity is composed of an indefinitely repeating inter-molecular β-sheet motif. It can grow by recruitment of the corresponding amyloid protein, while its repetitiveness can translate what would be a non-specific activity as monomer into a potent one through cooperativity. Because of these properties, the activities of amyloids are manifold and include peptide storage, template assistance, loss of function, gain of function, generation of toxicity, membrane binding, infectivity, etc. Thus, amyloids are associated both with diseases, including Alzheimer’s, Creutzfeldt-Jakob and Parkinson’s disease, and biological functions such as hormone storage in secretory granules and skin pigmentation in mammals. This review summarizes the recent high-resolution structural studies of amyloid fibrils in light of their biological activities, with special focus on the functional HET-s prion system and hormone storage in secretory granules.


Secretory Granule Amyloid Fibril Peptide Hormone Silk Fiber Amyloid Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This review is adopted from a review written by Greenwald and Riek (2010) and from a review written by Seuring et al. (2012). The artist of Fig. 4 is Christina Comiotto.


  1. Arvan P, Castle D (1998) Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 332:593–610PubMedGoogle Scholar
  2. Astbury WT, Dickinson S, Bailey K (1935) The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem J 29:2351–2360PubMedGoogle Scholar
  3. Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Coulary-Salin B, Forge V, Bathany K, Lascu I, Schmitter JM, Riek R, Saupe SJ (2003) Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J 22:2071–2081PubMedCrossRefGoogle Scholar
  4. Balguerie A, Dos Reis S, Coulary-Salin B, Chaignepain S, Sabourin M, Schmitter JM, Saupe SJ (2004) The sequences appended to the amyloid core region of the HET-s prion protein determine higher-order aggregate organization in vivo. J Cell Sci 117:2599–2610PubMedCrossRefGoogle Scholar
  5. Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147PubMedCrossRefGoogle Scholar
  6. Bennett MJ, Sawaya MR, Eisenberg D (2006) Deposition diseases and 3D domain swapping. Structure 14:811–824PubMedCrossRefGoogle Scholar
  7. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366PubMedCrossRefGoogle Scholar
  8. Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the HET-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778PubMedCrossRefGoogle Scholar
  9. Dannies PS (2001) Concentrating hormones into secretory granules: layers of control. Mol Cell Endocrinol 177:87–93PubMedCrossRefGoogle Scholar
  10. Eisenberg D, Nelson R, Sawaya MR, Balbirnie M, Sambashivan S, Ivanova MI, Madsen AO, Riekel C (2006) The structural biology of protein aggregation diseases: fundamental questions and some answers. Acc Chem Res 39:568–575PubMedCrossRefGoogle Scholar
  11. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4:e6PubMedCrossRefGoogle Scholar
  12. Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid – from bacteria to humans. Trends Biochem Sci 32:217–224PubMedCrossRefGoogle Scholar
  13. Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VMY (2003) Initiation and synergistic fibrillization of tau and a-synuclein. Science 300:636–640PubMedCrossRefGoogle Scholar
  14. Greenwald J, Riek R (2010) Biology of amyloid: structure, function, and regulation. Structure 18:1244–1260PubMedCrossRefGoogle Scholar
  15. Greenwald J, Buhtz C, Ritter C, Kwiatkowski W, Choe S, Maddelein ML, Ness F, Cescau S, Soragni A, Leitz D, Saupe S, Riek R (2010) The mechanism of prion inhibition by HET-S. Mol Cell 38:889–899PubMedCrossRefGoogle Scholar
  16. Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465:239–242PubMedCrossRefGoogle Scholar
  17. Han HY, Weinreb PH, Lansbury PT (1995) The core Alzheimer’s peptide NAC forms amyloid fibrils which seed and are seeded by b-Amyloid – is NAC a common trigger or target in neurodegenerative disease? Chem Biol 2:163–169PubMedCrossRefGoogle Scholar
  18. Ivanova MI, Sievers SA, Sawaya MR, Wall JS, Eisenberg D (2009) Molecular basis for insulin fibril assembly. Proc Natl Acad Sci USA 106:18990–18995PubMedCrossRefGoogle Scholar
  19. Kajava AV, Steven AC (2006) b-Rolls, b-helices, and other b-solenoid proteins. Adv Protein Chem 73:55–96PubMedCrossRefGoogle Scholar
  20. Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230:25–32PubMedCrossRefGoogle Scholar
  21. Kelly RB (1987) Protein transport. From organelle to organelle. Nature 326:14–15PubMedCrossRefGoogle Scholar
  22. Lacy PE (1975) Endocrine secretory mechanisms. A review. Am J Pathol 79:170–188PubMedGoogle Scholar
  23. Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-b(1-42) fibrils. Proc Natl Acad Sci USA 102:17342–17347PubMedCrossRefGoogle Scholar
  24. Maddelein ML, Dos Reis S, Duvezin-Caubet S, Coulary-Salin B, Saupe SJ (2002) Amyloid aggregates of the HET-s prion protein are infectious. Proc Natl Acad Sci USA 99:7402–7407PubMedCrossRefGoogle Scholar
  25. Maji SK, Schubert D, Rivier C, Lee S, Rivier JE, Riek R (2008) Amyloid as a depot for the formulation of long-acting drugs. PLoS Biol 6:e17PubMedCrossRefGoogle Scholar
  26. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325:328–332PubMedCrossRefGoogle Scholar
  27. Nelson R, Eisenberg D (2006a) Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16:260–265PubMedCrossRefGoogle Scholar
  28. Nelson R, Eisenberg D (2006b) Structural models of amyloid-like fibrils. Adv Protein Chem 73:235–282PubMedCrossRefGoogle Scholar
  29. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-b spine of amyloid-like fibrils. Nature 435:773–778PubMedCrossRefGoogle Scholar
  30. Osherovich LZ, Weissman JS (2002) The utility of prions. Dev Cell 2:143–151PubMedCrossRefGoogle Scholar
  31. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:347–358PubMedCrossRefGoogle Scholar
  32. Riek R (2006) Cell biology: infectious Alzheimer’s disease? Nature 444:429–431PubMedCrossRefGoogle Scholar
  33. Ritter C, Maddelein ML, Siemer AB, Luhrs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848PubMedCrossRefGoogle Scholar
  34. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AO, Eisenberg D (2007) Atomic structures of amyloid cross-b spines reveal varied steric zippers. Nature 447:453–457PubMedCrossRefGoogle Scholar
  35. Seuring S, Nespovitaya N, Rusihauser J, Spiess M, Riek R (2012) Hormone amyloids in sickness and in health. In: Otzen D (ed) Amyloid fibrils and prefibrillar aggregates molecular and biological properties. Wiley-VCH, WeinheimGoogle Scholar
  36. Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98PubMedCrossRefGoogle Scholar
  37. Sparr E, Engel MF, Sakharov DV, Sprong M, Jacobs J, de Kruijff B, Hoppener JW, Killian JA (2004) Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett 577:117–120PubMedCrossRefGoogle Scholar
  38. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739PubMedCrossRefGoogle Scholar
  39. Tooze SA (1998) Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta 1404:231–244PubMedCrossRefGoogle Scholar
  40. Toyama BH, Kelly MJ, Gross JD, Weissman JS (2007) The structural basis of yeast prion strain variants. Nature 449:233–237PubMedCrossRefGoogle Scholar
  41. True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–483PubMedCrossRefGoogle Scholar
  42. Wang L, Schubert D, Sawaya MR, Eisenberg D, Riek R (2010b) Multidimensional structure-activity relationship of a protein in its aggregated states. Angew Chem Int Ed Engl 49:3904–3908PubMedCrossRefGoogle Scholar
  43. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526PubMedCrossRefGoogle Scholar
  44. Wiltzius JJ, Sievers SA, Sawaya MR, Cascio D, Popov D, Riekel C, Eisenberg D (2008) Atomic structure of the cross-b spine of islet amyloid polypeptide (amylin). Protein Sci 17:1467–1474PubMedCrossRefGoogle Scholar
  45. Wiltzius JJ, Landau M, Nelson R, Sawaya MR, Apostol MI, Goldschmidt L, Soriaga AB, Cascio D, Rajashankar K, Eisenberg D (2009) Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol 16:973–978PubMedCrossRefGoogle Scholar
  46. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that {alpha}-synuclein oligomers are toxic. Proc Natl Acad Sci USA 108:4194–4199PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.ETH Zurich, Physical Chemistry, ETH HonggerbergZurichSwitzerland

Personalised recommendations