Skip to main content

Classification of Modeling for Versatile Simulation Goals in Robotic Surgery

  • Chapter
Frontiers of Intelligent Autonomous Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 466))

  • 1646 Accesses

Abstract

Simulation is common practice for surgeon training in particular for robotic surgery. This paper introduces further relevant applications of simulation that improve patient safety. Therefore, the design of a modular simulator for minimally invasive robotic surgery is presented. The authors introduce a classification of hierarchical levels of modeling details for the three aspects Application, System, and Patient. Furthermore, the principal use case classes Training, Workflow Validation, Workflow Design, Monitoring, and Robot Design of simulation for robotic surgery are introduced. For each class standard simulator setups are presented. The application of the classification is exemplified for the use cases Training and Robot Design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. da Vinci skills simulator, http://www.intuitivesurgical.com/products/skills_simulator/ (last visited January 30, 2012)

  2. Systems Engineering Handbook, Version 3.1. International Council on Systems Engineering (INCOSE) (2007)

    Google Scholar 

  3. Agency for Healthcare Research and Quality: Improving patient saftey through simulation research (2008), http://www.ahrq.gov/qual/simulproj.html

  4. Alimisis, D., Vicentini, M., Fiorini, P.: Towards a problem-based training curriculum for surgical robotics: the SAFROS project. In: Bastiaens, T., Ebner, M. (eds.) Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, Chesapeake, VA, pp. 297–302 (2011)

    Google Scholar 

  5. Banks, J. (ed.): Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice. Wiley & Sons, New York (1998)

    Google Scholar 

  6. Basdogan, C., Sedef, M., Harders, M., Wesarg, S.: VR-based simulators for training in minimally invasive surgery. Computer Graphics and Applications 27(2), 54–66 (2007), doi:10.1109/MCG.2007.51

    Article  Google Scholar 

  7. Franklin, G., Powell, J.D., Workman, M.L.: Digital Control of Dynamic Systems, 3rd edn. Addison Wesley (1998)

    Google Scholar 

  8. Herron, D., Marohn, M.: A consensus document on robotic surgery. Surgical Endoscopy 22, 313–325 (2008), doi:10.1007/s00464-007-9727-5

    Article  Google Scholar 

  9. Hirzinger, G., Brunner, B., Dietrich, J., Heindl, J.: Sensor-based space robotics-ROTEX and its telerobotic features. IEEE Transactions on Robotics and Automation 9(5) (1993)

    Google Scholar 

  10. Klodmann, J., Konietschke, R., Albu-Schäffer, A., Hirzinger, G.: Static calibration of the DLR medical robot MIRO, a flexible lightweight robot with integrated torque sensors. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3708–3715. IEEE, San Francisco (2011), doi:10.1109/IROS.2011.6095097

    Chapter  Google Scholar 

  11. Lerner, M., Ayalew, M., Peine, W., Sundaram, C.: Does training on a virtual reality robotic simulator improve performance on the da vinci surgical system? Journal of Endourology 24(3) (2010)

    Google Scholar 

  12. Object Managment Group, OMG Systems Modeling Language (OMG SysML), Version 1.2. Document formal/2010-06-01 (2006), http://www.omg.org/spec/SysML/1.2

  13. Satava, R.: Historical review of surgical simulation - a personal perspective. World Journal of Surgery 32(2), 141–148 (2008), doi:10.1007/s00268-007-9374-y

    Article  Google Scholar 

  14. Sokolowski, J., Banks, C. (eds.): Principles of Modeling and Simulation: A Multidisciplinary Approach. Wiley & Sons, New York (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jörg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jörg, S., Konietschke, R., Klodmann, J. (2013). Classification of Modeling for Versatile Simulation Goals in Robotic Surgery. In: Lee, S., Yoon, KJ., Lee, J. (eds) Frontiers of Intelligent Autonomous Systems. Studies in Computational Intelligence, vol 466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35485-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35485-4_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35484-7

  • Online ISBN: 978-3-642-35485-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics