Skip to main content

Natural Terrain Detection and SLAM Using LIDAR for an UGV

  • Chapter
Frontiers of Intelligent Autonomous Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 466))

Abstract

This paper describes natural terrain detection and SLAM algorithms using a LIDAR sensor for an unmanned ground vehicle. We describe how features are detected from natural terrain, and then localize the vehicle’s position and compose a map with the detected features. The LIDAR is equipped on the experimental vehicle to scan natural terrain. The scan data include many kinds of natural disturbances on uneven terrain: a banded tree, a branch of a tree, non-uniform size of bushes, and undefined or unexpected objects. We apply a RANSAC (RANdom SAmple Consensus) algorithm to discriminate ground point cloud data and object point cloud data, and then separate bush points and tree points by a combination of two algorithms, GMM (Gaussian Mixture Model) and EM (Expectation Maximization). The GMM and EM algorithms are for extracting features and classifying groups, respectively. We propose a double FCM (Fuzzy C-mean clustering) algorithm to robustly estimate the number of trees and their positions. The Extended Kalman Filter applied to simultaneous localization and mapping (EKF-SLAM) is composed of the extracted tree features. The mahalanobis distance is applied to retain consistency for feature correspondence, which is used data association. Finally, we show the results obtained from implementation of the approach on a tree-covered mountain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uumson, C., et al.: Autonomous driving in urban environments: Boss and the Urban Challenge. Journal of Field Robotics-Part I 25(8), 425–466 (2008)

    Article  Google Scholar 

  2. Crane, C., et al.: Team Gator Nation’s Autonomous Vehicle Development for the 2007 DARPA Urban Challenge. Journal of Aerospace Computing, Information, and Communication 4, 1059–1085 (2007)

    Article  Google Scholar 

  3. Joel, A., Dean, E., Terence, S., Mike, A., Michael, O.: Autonomous Navigation of an Unmanned Ground Vehicle in Unstructured Forest Terrain. In: ECSIS Symp. Learning and Adaptive Behaviors for Robotic Systems, LAB-RS 2008, pp. 103–108 (2008)

    Google Scholar 

  4. Wellington, C.: Learning a Terrain Model for Autonomous Navigation in Rough Terrain. Ph.D dissertation (2005)

    Google Scholar 

  5. Vandapel, N., Huber, D.F., Kapuria, A., Hebert, M.: Natural Terrain Classication using 3-D Ladar Data. In: Proceeding of IEEE Int. Conf. on Robotics and Automation, pp. 5117–5112 (2004)

    Google Scholar 

  6. Lalonde, J.F., Vandapel, N., Hebert, M.: Data Structure for Efficient Dynamic Processing in 3-D. International Journal of Robotics Research 26(8), 777–796 (2007)

    Article  Google Scholar 

  7. Cho, K., Baeg, S.H., Park, S.D.: Multiple object detection and tracking on the uneven terrain using multiple lidar for UGV. In: Proceeding SPIE Defense Sensor and Security, pp. 26–30 (2012)

    Google Scholar 

  8. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: “A paradigm for modelfitting with applications to image analysis and automated cartography”. Communicationsof the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  9. Nascimeto, S., Mirkin, B., Moura-Pires, F.: A Fuzzy Clustering Model of Data and Fuzzy C-means. In: Proc. 19th IEEE Int. Conf. Fuzzy Syst., vol. 1, pp. 302–307 (2000)

    Google Scholar 

  10. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

    Article  MathSciNet  Google Scholar 

  11. Bailey, T.: Mobile Robot Localisation and Mapping in Extensive Outdoor Environments., Ph.D dissertation (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuk Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cho, K., Baeg, S., Park, S. (2013). Natural Terrain Detection and SLAM Using LIDAR for an UGV. In: Lee, S., Yoon, KJ., Lee, J. (eds) Frontiers of Intelligent Autonomous Systems. Studies in Computational Intelligence, vol 466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35485-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35485-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35484-7

  • Online ISBN: 978-3-642-35485-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics