Skip to main content

New Motor Primitives through Graph Search, Interpolation and Generalization

  • Chapter
Book cover Frontiers of Intelligent Autonomous Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 466))

  • 1660 Accesses

Abstract

This paper presents our proposed approach for discovering new motor primitives in a database of demonstrated example movements. Example trajectory data is usually obtained from human demonstration or by kinesthetic guiding. It is then organized and clustered into a binary tree with transition graphs at every level. Each level presents a different granularity of example data. We show that new movements (or their parts) can be discovered through graph search, by exploiting the interdependencies between the movements encoded by the graph. By combining results with optimized interpolation new series of primitives can be found. A complete representation of new, not directly demonstrated, movements can be constructed by using new series of movements with statistical generalization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breazeal, C., Scassellati, B.: Robots that imitate humans. Trends Cognitive Sci. 6(11), 481–487 (2002)

    Article  Google Scholar 

  2. Calinon, S., D’halluin, F., Sauser, E.L., Caldwell, D.G., Billard, A.G.: Learning and reproduction of gestures by imitation: An approach based on Hidden Markov Model and Gaussian Mixture Regression. IEEE Robot. Autom. Mag. 17(2), 44–54 (2010)

    Article  Google Scholar 

  3. Dillmann, R.: Teaching and learning of robot tasks via observation of human performance. Robotics and Autonomous Systems 47(2-3), 109–116 (2004)

    Article  Google Scholar 

  4. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proc. IEEE Int. Conf. Robot. Autom., Washington, DC, pp. 1398–1403 (2002)

    Google Scholar 

  5. Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recognition 19(1), 41–47 (1986)

    Article  Google Scholar 

  6. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Transactions on Graphics 21(3), 473–482 (2002)

    Article  Google Scholar 

  7. Kulić, D., Takano, W., Nakamura, Y.: Online segmentation and clustering from continuous observation of whole body motions. IEEE Trans. Robot. 25(5), 1158–1166 (2009)

    Article  Google Scholar 

  8. Kulić, D., Takano, W., Nakamura, Y.: Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden Markov chains. Int. J. Robot. Res. 27(7), 761–784 (2008)

    Article  Google Scholar 

  9. Lim, B., Ra, S., Park, F.C.: Movement Primitives, Principal Component Analysis, and the Efficient Generation of Natural Motions. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 4630–4635 (2005)

    Google Scholar 

  10. MacQuuen, J.B.: Some methods for classification and analysis of multivariate observation. In: Proc. of the 5th Berkley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  11. Peters, J., Mülling, K., Kober, J., Nguyen-Tuong, D., Krömer, O.: Towards Motor Skill Learning for Robotics. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. Springer Tracts in Advanced Robotics, vol. 70, pp. 469–482. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives, Department of Applied Mathematics and Theoretical Physics, Cambridge England, technical report NA2009/06 (2009)

    Google Scholar 

  13. Rose, C., Cohen, M.F., Bodenheimer, B.: Verbs and adverbs: multidimensional motion interpolation. IEEE Computer Graphics and Applications 18(5), 32–40 (1998)

    Article  Google Scholar 

  14. Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated motion graphs. ACM Transactions on Graphics 26(3) (2007)

    Google Scholar 

  15. Sidenbladh, H., Black, M.J., Sigal, L.: Implicit Probabilistic Models of Human Motion for Synthesis and Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 784–800. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Ude, A., Gams, A., Asfour, T., Morimoto, J.: Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Trans. Robotics and Autom. (5), 800–815 (2010)

    Google Scholar 

  17. Yamane, K., Yamaguchi, Y., Nakamura, Y.: Human motion database with a binary tree and node transition graphs. In: Presented at the Robot., Sci. Syst. Conf., Seattle, Washington (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miha Deniša .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deniša, M., Ude, A. (2013). New Motor Primitives through Graph Search, Interpolation and Generalization. In: Lee, S., Yoon, KJ., Lee, J. (eds) Frontiers of Intelligent Autonomous Systems. Studies in Computational Intelligence, vol 466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35485-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35485-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35484-7

  • Online ISBN: 978-3-642-35485-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics