Skip to main content

Unpredictability and Computational Irreducibility

  • Chapter
Irreducibility and Computational Equivalence

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 2))

Abstract

We explore several concepts for analyzing the intuitive notion of computational irreducibility and we propose a robust formal definition, first in the field of cellular automata and then in the general field of any computable function f from N to N. We prove that, through a robust definition of what means “to be unable to compute the n th step without having to follow the same path than simulating the automaton or to be unable to compute f(n) without having to compute f(i) for i = 1 to n–1”, this implies genuinely, as intuitively expected, that if the behavior of an object is computationally irreducible, no computation of its n th state can be faster than the simulation itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antunes, L., Matos, A., Souto, A., Vitany, P.: Depth as Randomness Deficiency. Theory Comput. Syst. 45, 724–739 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ay, N., Müller, M., Szkola, A.: Effective complexity and its relation to logical depth. IEEE Transactions on Information Theory, 4593–4607 (2010)

    Google Scholar 

  3. Bennett, C.H.: Logical Depth and Physical Complexity. In: Herken, R. (ed.) The Universal Turing Machine- a Half-Century Survey. Oxford University Press (1988)

    Google Scholar 

  4. Bennett, C.H.: How to Define Complexity in Physics and Why. In: Gregersen, N.H. (ed.) From Complexity to Life: On the Emergence of Life and Meaning. Oxford University Press, New York (2003)

    Google Scholar 

  5. Bishop, R.: Chaos. Stanford Encyclopedia of Philosophy (2008), http://plato.stanford.edu/entries/chaos/

  6. Calude, C.: Information and Randomness: An Algorithmic Perspective, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  7. Chaitin, G.: Algorithmic Information Theory. Cambridge University Press (1992)

    Google Scholar 

  8. Chaitin, G.: Exploring Randomness. Springer, London (2001)

    Book  MATH  Google Scholar 

  9. Cobham, A.: The intrinsic computational difficulty of functions. In: Proc. Logic, Methodology, and Philosophy of Science II. North Holland (1965)

    Google Scholar 

  10. Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15, 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Copeland, J.: The Church-Turing Thesis, Stanford Encyclopedia of Philosophy (2002), http://plato.stanford.edu/entries/church-turing/

  12. Delahaye, J.P.: Randomness, Unpredictability and Absence of Order. In: Dubucs, J.-P. (ed.) Philosophy of Probability, pp. 145–167. Kluwer, Dordrecht (1993)

    Google Scholar 

  13. Delahaye, J.P.: Information, complexité et hasard. Editions Hermès, Paris (1998)

    Google Scholar 

  14. Downey, R.G., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer (2010)

    Google Scholar 

  15. Gandy, R.: Church’s Thesis and Principles for Mechanisms. In: Barwise, J., Keisler, H.J., Kunen, K. (eds.) The Kleene Symposium. North-Holland, Amsterdam (1980)

    Google Scholar 

  16. Garey, M., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979)

    MATH  Google Scholar 

  17. Goldreich, O.: Computational Complexity, a conceptual perspective. Cambridge University Press (2008)

    Google Scholar 

  18. Hartley, R.: Theory of Recursive Functions and Effective Computability. McGraw-Hill (1967); MIT Press (1987)

    Google Scholar 

  19. Hopcroft J.E., Ullman J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979); 3rd edition (with Rajeev Motwani) (2006)

    Google Scholar 

  20. Israeli, N., Goldenfeld, N.: Computational Irreducibility and the Predictability of Complex Physical Systems. Phys. Rev. Lett. 92 (2004)

    Google Scholar 

  21. Kolmogorov, A.N.: Three Approaches to the Quantitative Definition of Information. Problems Inform. Transmission 1(1), 1–7 (1965)

    MathSciNet  Google Scholar 

  22. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer (1997)

    Google Scholar 

  23. Lorenz, E.: The Essence of Chaos. University of Washington Press, Seattle (1993)

    Book  MATH  Google Scholar 

  24. Martin-Löf, P.: The Definition of Random Sequences. Information and Control 9(6), 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moser, P.: A general notion of useful information. In: Neary, T., Woods, D., Seda, A.K., Murphy, N. (eds.) CSP. EPTCS, vol. 1, pp. 164–171 (2008)

    Google Scholar 

  26. Odifreddi, P.: Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers. North-Holland (1989)

    Google Scholar 

  27. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)

    Google Scholar 

  28. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  29. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press (2002)

    Google Scholar 

  30. Schuster H.G., Wolfram S.: Just Deterministic Chaos an Introduction, 4th revised and Enlarged edn. WILEY-VCH Verlag GmbH & Co. KGaA (2005)

    Google Scholar 

  31. Ulam, S.: Random Processes and Transformations. In: Proc. International Congress of Mathematicians, Cambridge, MA, vol. 2, pp. 264–275 (1952)

    Google Scholar 

  32. Wolfram, S.: Statistical Mechanics of Cellular Automata. Rev. Mod. Phys. 55, 601–644 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wolfram, S.: Undecidability and intractability in theoretical physics. Phys. Rev. Letters 54(8) (1985)

    Google Scholar 

  34. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc. (2002)

    Google Scholar 

  35. Zak, M., Zbilut, J.P., Meyers, R.: From Instability to Intelligence, Complexity and Predictability in Nonlinear Dynamics. Springer (1997)

    Google Scholar 

  36. Zenil, H., Delahaye, J.P., Gaucherel, C.: Image Characterization and Classification by Physical Complexity. Complexity 17(3), 26–42 (2012), http://arxiv.org/abs/1006.0051

    Article  Google Scholar 

  37. Zenil, H., Soler-Toscano, F., Joosten, J.J.: Empirical Encounters with Computational Irreducibility and Unpredictability. Minds and Machines 21 (2011), http://arxiv.org/abs/1104.3421

  38. Zenil, H., Delahaye, J.P.: Numerical Evaluation of Algorithmic Complexity for Short Strings: A Glance into the Innermost Structure of Randomness. In: Applied Mathematics and Computation (2012)

    Google Scholar 

  39. Zwirn, H.: Les limites de la connaissance. Editions Odile Jacob, Paris (2000)

    Google Scholar 

  40. Zwirn, H.: Les systèmes complexes. Odile Jacob (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Zwirn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zwirn, H., Delahaye, JP. (2013). Unpredictability and Computational Irreducibility. In: Zenil, H. (eds) Irreducibility and Computational Equivalence. Emergence, Complexity and Computation, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35482-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35482-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35481-6

  • Online ISBN: 978-3-642-35482-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics