Advertisement

When and How Process Groups Can Be Used to Reduce the Renaming Space

  • Armando Castañeda
  • Michel Raynal
  • Julien Stainer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7702)

Abstract

Considering the M-renaming problem and process groups, this paper investigates the following question: Is there a relation between the number of groups and the size of the new name space M? This question can be rephrased as follows: Can the initial partitioning of the processes into m groups allows the size of the renaming space M to be reduced, and if yes, how much?

This paper answers the previous questions. Let n denote the number of processes. Assuming that the processes are initially partitioned into m = n − ℓ non-empty groups, such that each process knows only its identity and its group number, the paper first presents a wait-free M-renaming algorithm whose size of the new name space is M = n + 2ℓ − 1. For \(\frac{n}{2} < m \leq n-1\) (i.e. \(1\leq \ell < \frac{n}{2}\)), we have M < 2n − 1, which shows that, when the number of groups is greater than \(\frac{n}{2}\), groups allow to circumvent the renaming lower bound in read/write systems. Then, on the lower bound size, the paper shows that there are pairs of values (n,m) such that there is no read/write wait-free M-renaming algorithm for which M ≤ 2n − 2. This impossibility result breaks our hope to have a renaming algorithm providing a new name space whose size would decrease “regularly” as the number of groups increases from 1 to n. Finally, the paper considers the case where each group includes at least s processes. This algorithm shows that, when m is such that \(\frac{n}{s+1}< m < \frac{n}{s}\), there is an M-renaming algorithm where M = 3n − (s + 1)m − 1 = n(2 − s) + (s + 1)ℓ − 1. Hence, the paper leaves open the following question: For any n and s = 1, does the predicate \(m > \frac{n}{2}\) define a threshold on the number of groups which allows the 2n − 2 lower bound on the renaming space size to be bypassed?

Keywords

Asynchronous read/write model Crash failure Distributed computability Process group Renaming problem Snapshot object Wait-freedom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snapshots of Shared Memory. Journal of the ACM 40(4), 873–890 (1993)zbMATHCrossRefGoogle Scholar
  2. 2.
    Afek, Y., Gafni, E., Lieber, O.: Tight Group Renaming on Groups of Size g Is Equivalent to g-Consensus. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 111–126. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Afek, Y., Gamzu, I., Levy, I., Merritt, M., Taubenfeld, G.: Group Renaming. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 58–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an Asynchronous Environment. Journal of the ACM 37(3), 524–548 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Attiya, H., Rajsbaum, S.: The Combinatorial Structure of Wait-Free Solvable Tasks. SIAM Journal on Computing 31(4), 1286–1313 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn., 414 pages. Wiley-Interscience (2004)Google Scholar
  7. 7.
    Attiya, H., Paz, A.: Counting-Based Impossibility Proofs for Renaming and Set Agreement. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 356–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Borowsky, E., Gafni, E.: Generalized FLP Impossibility Result for t-Resilient Asynchronous Computations. In: Proc. 25th ACM Symposium on Theory of Computing, STOC 1993, pp. 91–100. ACM Press (1993)Google Scholar
  9. 9.
    Castañeda, A., Imbs, D., Rajsbaum, S., Raynal, M.: Renaming Is Weaker Than Set Agreement But for Perfect Renaming: A Map of Sub-consensus Tasks. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 145–156. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Castañeda, A., Rajsbaum, S.: New Combinatorial Topology Upper and Lower Bounds for Renaming: The Lower Bound. Distributed Computing 22(5-6), 287–301 (2010)zbMATHCrossRefGoogle Scholar
  11. 11.
    Castañeda, A., Rajsbaum, S.: New Combinatorial Topology Upper and Lower Bounds for Renaming: The Upper Bound. Journal of the ACM 59(1), 3 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Castañeda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared memory systems: an introduction. Elsevier Computer Science Review 5, 229–251 (2011)Google Scholar
  13. 13.
    Gafni, E.: Group-Solvability. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 30–40. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Gafni, E.: Renaming with k-Set-Consensus: An Optimal Algorithm into n + k – 1 Slots. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 36–44. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Gafni, E., Mostéfaoui, A., Raynal, M., Travers, C.: From Adaptive Renaming to Set Agreement. Theoretical Computer Science 410, 1328–1335 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus Tasks: Renaming Is Weaker Than Set Agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Gafni, E., Raynal, M., Travers, C.: Test&set, Adaptive Renaming and Set Agreement: a Guided Visit to Asynchronous Computability. In: 26th IEEE Symposium on Reliable Distributed Systems, SRDS 2007, pp. 93–102. IEEE Computer Society Press (2007)Google Scholar
  18. 18.
    Herlihy, M.P.: Wait-free synchronization. ACM Transactions on Programming Languages and Systems 13(1), 124–149 (1991)CrossRefGoogle Scholar
  19. 19.
    Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computability. Journal of the ACM 46(6), 858–923 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Imbs, D., Rajsbaum, S., Raynal, M.: The Universe of Symmetry Breaking Tasks. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 66–77. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Imbs, D., Raynal, M.: On Adaptive Renaming under Eventually Limited Contention. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 377–387. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement Is Impossible: The Topology of Public Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Armando Castañeda
    • 1
  • Michel Raynal
    • 2
    • 3
  • Julien Stainer
    • 2
  1. 1.Department of Computer ScienceTechnionHaifaIsrael
  2. 2.Institut Universitaire de FranceFrance
  3. 3.IRISA, Université de RennesRennes CedexFrance

Personalised recommendations