Advertisement

On the Polling Problem for Social Networks

  • Bao-Thien Hoang
  • Abdessamad Imine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7702)

Abstract

We tackle the polling problem in social networks where the privacy of exchanged information and user reputation are very critical. Indeed, users want to preserve the confidentiality of their votes and to hide, if any, their misbehaviors. Recent works [7,8] proposed polling protocols based on simple secret sharing scheme and without requiring any central authority or cryptography system. But these protocols can be deployed safely provided that the social graph structure should be transformed into a ring-based structure and the number of participating users is perfect square. Accordingly, devising polling protocols regardless these constraints remains a challenging issue.

In this paper, we propose a simple decentralized polling protocol that relies on the current state of social graphs. More explicitly, we define one family of social graphs and show their structures constitute necessary and sufficient condition to ensure vote privacy and limit the impact of dishonest users on the accuracy of the output of the poll. In a system of N users with D ≤ N/5 dishonest ones (and similarly to the works [7,8] where they considered \(D<\sqrt{N}\)), a privacy parameter k enables us to obtain the following results: (i) the probability to recover one vote of honest node is bounded by \(\sum_{m=k+1}^{2k}\bigl(\frac{D}{N}\bigr)^{m}.\bigl(\frac{1}{2}\bigr)^{2k+1-m} \); (ii) the maximum number of votes revealed by dishonest nodes is 2D; and, (iii) the maximum impact on the output is (6k + 4)D. Despite the use of richer social graph structures, we succeed to detect the misbehaving users by manipulating verification procedures based on shortest path scheme and routing tables. An experimental evaluation demonstrates that the dishonest coalition never affects the outcome of the poll outside the theoretical bound of (6k + 4)D.

Keywords

Social networks Polling protocol Secret sharing Privacy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benaloh, J.C.: Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987)Google Scholar
  2. 2.
    Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable Multiparty Computation with Nearly Optimal Work and Resilience. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Damgård, I., Nielsen, J.B.: Scalable and Unconditionally Secure Multiparty Computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: Secretive Birds: Privacy in Population Protocols. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 329–342. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Giurgiu, A., Guerraoui, R., Huguenin, K., Kermarrec, A.-M.: Computing in Social Networks. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 332–346. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Gubichev, A., Bedathur, S.J., Seufert, S., Weikum, G.: Fast and accurate estimation of shortest paths in large graphs. In: CIKM, pp. 499–508 (2010)Google Scholar
  7. 7.
    Guerraoui, R., Huguenin, K., Kermarrec, A.-M., Monod, M.: Decentralized Polling with Respectable Participants. In: OPODIS, pp. 144–158 (2009)Google Scholar
  8. 8.
    Guerraoui, R., Huguenin, K., Kermarrec, A.-M., Monod, M., Vigfusson, Y.: Decentralized polling with respectable participants. J. Parallel Distrib. Comput. 72(1), 13–26 (2012)zbMATHCrossRefGoogle Scholar
  9. 9.
    Malkhi, D., Margo, O., Pavlov, E.: E-voting without ’Cryptography’ (Extended Abstract). In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Malkhi, D., Pavlov, E.: Anonymity without ‘Cryptography’ (Extended Abstract). In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 117–135. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Mislove, A., Post, A., Druschel, P., Gummadi, P.K.: Ostra: Leveraging trust to thwart unwanted communication. In: Crowcroft, J., Dahlin, M. (eds.) NSDI, pp. 15–30. USENIX Association (2008)Google Scholar
  12. 12.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: Johnson, D.S. (ed.) STOC, pp. 73–85. ACM (1989)Google Scholar
  13. 13.
    Sirivianos, M., Kim, K., Yang, X.: Socialfilter: Introducing social trust to collaborative spam mitigation. In: INFOCOM, pp. 2300–2308 (2011)Google Scholar
  14. 14.
    Thien, H.B., Imine, A.: On the Polling Problem for Social Networks. Research Report RR-8055, INRIA (2012)Google Scholar
  15. 15.
    Tran, D.N., Min, B., Li, J., Subramanian, L.: Sybil-resilient online content voting. In: Rexford, J., Sirer, E.G. (eds.) NSDI, pp. 15–28. USENIX Association (2009)Google Scholar
  16. 16.
    Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit: A near-optimal social network defense against sybil attacks. IEEE/ACM Trans. Netw. 18(3), 885–898 (2010)CrossRefGoogle Scholar
  17. 17.
    Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.D.: Sybilguard: defending against sybil attacks via social networks. IEEE/ACM Trans. Netw. 16(3), 576–589 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bao-Thien Hoang
    • 1
  • Abdessamad Imine
    • 1
  1. 1.Lorraine University and INRIA Nancy - Grand-EstFrance

Personalised recommendations