Causality, Influence, and Computation in Possibly Disconnected Synchronous Dynamic Networks

  • Othon Michail
  • Ioannis Chatzigiannakis
  • Paul G. Spirakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7702)


In this work, we study the propagation of influence and computation in dynamic networks that are possibly disconnected at every instant. We focus on a synchronous message passing communication model with broadcast and bidirectional links. To allow for bounded end-to-end communication we propose a set of minimal temporal connectivity conditions that bound from the above the time it takes for information to make progress in the network. We show that even in dynamic networks that are disconnected at every instant information may spread as fast as in networks that are connected at every instant. Further, we investigate termination criteria when the nodes know some upper bound on each of the temporal connectivity conditions. We exploit our termination criteria to provide efficient protocols (optimal in some cases) that solve the fundamental counting and all-to-all token dissemination (or gossip) problems. Finally, we show that any protocol that is correct in instantaneous connectivity networks can be adapted to work in temporally connected networks.


dynamic graph mobile computing worst-case dynamicity adversarial schedule temporal connectivity counting information dissemination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AAD+06]
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing, 235–253 (March 2006)Google Scholar
  2. [AAER07]
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)CrossRefGoogle Scholar
  3. [AKL08]
    Avin, C., Koucký, M., Lotker, Z.: How to Explore a Fast-Changing World (Cover Time of a Simple Random Walk on Evolving Graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. [APRU12]
    Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and efficient computation in dynamic peer-to-peer networks. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 551–569. SIAM (2012)Google Scholar
  5. [AW04]
    Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations, and advanced topics, vol. 19. Wiley-Interscience (2004)Google Scholar
  6. [BCF09]
    Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, PODC 2009, pp. 260–269. ACM (2009)Google Scholar
  7. [Bol98]
    Bollobás, B.: Modern Graph Theory, corrected edn. Springer (July 1998)Google Scholar
  8. [CFQS11]
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-Varying Graphs and Dynamic Networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW 2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. [CMM+08]
    Clementi, A.E., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-markovian dynamic graphs. In: Proceedings of the Twenty-Seventh ACM Symposium on Principles of Distributed Computing, PODC 2008, pp. 213–222. ACM, New York (2008)CrossRefGoogle Scholar
  10. [CMN+11]
    Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Passively mobile communicating machines that use restricted space. Theor. Comput. Sci. 412(46), 6469–6483 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  11. [Dol00]
    Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  12. [Hae11]
    Haeupler, B.: Analyzing network coding gossip made easy. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pp. 293–302. ACM (2011)Google Scholar
  13. [KKK00]
    Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 504–513 (2000)Google Scholar
  14. [KLO10]
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp. 513–522. ACM, New York (2010)CrossRefGoogle Scholar
  15. [KO11]
    Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News 42, 82–96 (2011); Keidar, I. (ed): Distributed Computing ColumnGoogle Scholar
  16. [KOM11]
    Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 1–10 (2011)Google Scholar
  17. [Lam78]
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)zbMATHCrossRefGoogle Scholar
  18. [Lyn96]
    Lynch, N.A.: Distributed Algorithms, 1st edn. Morgan Kaufmann (1996)Google Scholar
  19. [MCS11a]
    Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theor. Comput. Sci. 412(22), 2434–2450 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. [MCS11b]
    Michail, O., Chatzigiannakis, I., Spirakis, P.G.: New Models for Population Protocols. In: Lynch, N.A. (ed.) Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool (2011)Google Scholar
  21. [MCS12]
    Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Brief Announcement: Naming and Counting in Anonymous Unknown Dynamic Networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 437–438. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. [OW05]
    O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing, DIALM-POMC 2005, pp. 104–110 (2005)Google Scholar
  23. [Sch02]
    Scheideler, C.: Models and Techniques for Communication in Dynamic Networks. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 27–49. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. [Soi09]
    Soifer, A.: The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators, 1st edn. Springer (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Othon Michail
    • 1
    • 2
  • Ioannis Chatzigiannakis
    • 1
    • 2
  • Paul G. Spirakis
    • 1
    • 2
  1. 1.Computer Technology Institute & Press “Diophantus” (CTI)PatrasGreece
  2. 2.Computer Engineering and Informatics Department (CEID)University of PatrasGreece

Personalised recommendations