Black Hole Search and Exploration in Unoriented Tori with Synchronous Scattered Finite Automata

  • Euripides Markou
  • Michel Paquette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7702)


We consider the problem of locating a black hole in a synchronous, anonymous, and unoriented torus network using mobile agents. A black hole is a harmful network node that destroys any agent visiting it without leaving any trace. The objective is to locate the black hole using as few agents as possible. We present here an almost optimal deterministic algorithm for synchronous (partially) unoriented tori using five scattered agents with constant memory and three identical tokens. We also study the exploration problem of a safe (i.e., without black holes) unoriented torus. While it has been previously shown that there is no universal algorithm for one agent with constant memory and any constant number of tokens which can explore all cubic planar graphs, we give here the first algorithm which enables a finite automaton with two tokens to explore (without termination detection) any totally unoriented torus and we prove optimality on the number of tokens.


Distributed Algorithms Fault Tolerance Black Hole Search Anonymous Networks Mobile Agents Finite State Automata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balamohan, B., Dobrev, S., Flocchini, P., Santoro, N.: Asynchronous Exploration of an Unknown Anonymous Dangerous Graph with O(1) Pebbles. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 279–290. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Bender, M.A., Slonim, D.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: Proc. of 35th Annual Symp. on Foundations of Computer Science, pp. 75–85 (1994)Google Scholar
  3. 3.
    Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than graphs). In: Proc. of 19th Symp. on Foundations of Computer Science, pp. 132–142 (1978)Google Scholar
  4. 4.
    Budach, L.: Automata and labyrinths. Mathematische Nachrichten 86(1), 195–282 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chalopin, J., Das, S., Labourel, A., Markou, E.: Black Hole Search with Finite Automata Scattered in a Synchronous Torus. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 432–446. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Chalopin, J., Das, S., Labourel, A., Markou, E.: Tight Bounds for Scattered Black Hole Search in a Ring. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 186–197. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Cooper, C., Klasing, R., Radzik, T.: Searching for Black-Hole Faults in a Network Using Multiple Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 320–332. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Complexity of searching for a black hole. Fundamenta Informaticae 71(2,3), 229–242 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. of Graph Theory 32(3), 265–297 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dobrev, S., Flocchini, P., Královic, R., Santoro, N.: Exploring an Unknown Graph to Locate a Black Hole Using Tokens. In: Navarro, G., Bertossi, L., Kohayakawa, Y. (eds.) TCS 2006. IFIP, vol. 209, pp. 131–150. Springer, Boston (2006)Google Scholar
  11. 11.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: Optimal mobile agents protocols. Distributed Computing 19(1), 1–19 (2006)CrossRefGoogle Scholar
  12. 12.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48, 67–90 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dobrev, S., Santoro, N., Shi, W.: Using scattered mobile agents to locate a black hole in an un-oriened ring with tokens. Int. J. of Foundations of Computer Science 19(6), 1355–1372 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: Optimal black hole search with pebbles. Algorithmica 62(3-4), 1006–1033 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Flocchini, P., Kellett, M., Mason, P., Santoro, N.: Map construction and exploration by mobile agents scattered in a dangerous network. In: Proc. of IEEE Int. Symp. on Parallel & Distributed Processing, pp. 1–10 (2009)Google Scholar
  16. 16.
    Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48, 166–177 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary graphs. Theoretical Computer Science 384(2-3), 201–221 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kosowski, A., Navarra, A., Pinotti, C.M.: Synchronization Helps Robots to Detect Black Holes in Directed Graphs. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS. LNCS, vol. 5923, pp. 86–98. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Kozen, D.: Automata and planar graphs. In: Proc. of Fundamentals of Computation Theory, pp. 243–254 (1979)Google Scholar
  20. 20.
    Mans, B.: Optimal distributed algorithms in unlabeled tori and chordal rings. Journal of Parallel and Distributed Computing 46(1), 80–90 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Rabin, M.: Maze threading automata. Seminar talk presented at the University of California at Berkeley (October 1967)Google Scholar
  22. 22.
    Rollik, H.: Automaten in planaren graphen. Acta Informatica 13, 287–298 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Shannon, C.E.: Presentation of a maze-solving machine. In: Proc. of 8th Conf. of the Josiah Macy Jr. Found (Cybernetics), pp. 173–180 (1951)Google Scholar
  24. 24.
    Shi, W.: Black Hole Search with Tokens in Interconnected Networks. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 670–682. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Euripides Markou
    • 1
  • Michel Paquette
    • 2
  1. 1.Department of Computer Science and Biomedical InformaticsUniversity of Central GreeceLamiaGreece
  2. 2.Department of Computer ScienceVanier CollegeMontréalCanada

Personalised recommendations