On the Impact of Identifiers on Local Decision

  • Pierre Fraigniaud
  • Magnús M. Halldórsson
  • Amos Korman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7702)


The issue of identifiers is crucial in distributed computing. Informally, identities are used for tackling two of the fundamental difficulties that are inherent to deterministic distributed computing, namely: (1) symmetry breaking, and (2) topological information gathering. In the context of local computation, i.e., when nodes can gather information only from nodes at bounded distances, some insight regarding the role of identities has been established. For instance, it was shown that, for large classes of construction problems, the role of the identities can be rather small. However, for the identities to play no role, some other kinds of mechanisms for breaking symmetry must be employed, such as edge-labeling or sense of direction. When it comes to local distributed decision problems, the specification of the decision task does not seem to involve symmetry breaking. Therefore, it is expected that, assuming nodes can gather sufficient information about their neighborhood, one could get rid of the identities, without employing extra mechanisms for breaking symmetry. We tackle this question in the framework of the \(\mathcal{LOCAL}\) model.

Let LD be the class of all problems that can be decided in a constant number of rounds in the \(\mathcal{LOCAL}\) model. Similarly, let LD* be the class of all problems that can be decided at constant cost in the anonymous variant of the \(\mathcal{LOCAL}\) model, in which nodes have no identities, but each node can get access to the (anonymous) ball of radius t around it, for any t, at a cost of t. It is clear that LD* ⊆ LD. We conjecture that LD*=LD. In this paper, we give several evidences supporting this conjecture. In particular, we show that it holds for hereditary problems, as well as when the nodes know an arbitrary upper bound on the total number of nodes. Moreover, we prove that the conjecture holds in the context of non-deterministic local decision, where nodes are given certificates (independent of the identities, if they exist), and the decision consists in verifying these certificates. In short, we prove that NLD*=NLD.


Distributed complexity locality identities decision problems symmetry breaking non-determinism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications to self stabilization. Theoretical Computer Science 186(1-2), 199–230 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Angluin, D.: Local and Global Properties in Networks of Processors. In: Proc. Twelfth ACM Symp. on Theory of Computing, STOC, pp. 82–93 (1980)Google Scholar
  3. 3.
    Amit, A., Linial, N., Matousek, J., Rozenman, E.: Random lifts of graphs. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, SODA, pp. 883–894 (2001)Google Scholar
  4. 4.
    Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-Stabilization By Local Checking and Correction. In: Proc. IEEE Symp. on the Foundations of Computer Science, FOCS, pp. 268–277 (1991)Google Scholar
  5. 5.
    Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in delta) time. In: Proc. 41st ACM Symp. on Theory of Computing, STOC, pp. 111–120 (2009)Google Scholar
  6. 6.
    Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed Verification and Hardness of Distributed Approximation. In: Proc. 43rd ACM Symp. on Theory of Computing, STOC (2011)Google Scholar
  7. 7.
    Dereniowski, D., Pelc, A.: Drawing maps with advice. Journal of Parallel and Distributed Computing 72, 132–143 (2012)zbMATHCrossRefGoogle Scholar
  8. 8.
    Dolev, S., Gouda, M., Schneider, M.: Requirements for silent stabilization. Acta Informatica 36(6), 447–462 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Trans. on Programming Languages and Systems 5, 66–77 (1983)zbMATHCrossRefGoogle Scholar
  10. 10.
    Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed Computing with Advice: Information Sensitivity of Graph Coloring. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Fraigniaud, P., Ilcinkas, D., Pelc, A.: Communication algorithms with advice. J. Comput. Syst. Sci. 76(3-4), 222–232 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice. In: Proc. 19th ACM Symp. on Parallelism in Algorithms and Architectures, SPAA, pp. 154–160 (2007)Google Scholar
  13. 13.
    Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: Proc. 52nd Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 708–717 (2011)Google Scholar
  14. 14.
    Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized Distributed Decision,
  15. 15.
    Fraigniaud, P., Pelc, A.: Decidability Classes for Mobile Agents Computing. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 362–374. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and Checkability in Wait-Free Computing. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 333–347. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Fraigniaud, P., Rajsbaum, S., Travers, C.: Universal Distributed Checkers and Orientation-Detection Tasks (submitted, 2012)Google Scholar
  18. 18.
    Fusco, E.G., Pelc, A.: Communication Complexity of Consensus in Anonymous Message Passing Systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 191–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Göös, M., Suomela, J.: Locally checkable proofs. In: Proc. 30th ACM Symp. on Principles of Distributed Computing, PODC (2011)Google Scholar
  20. 20.
    Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. In: Proc. 31st Symposium on Principles of Distributed Computing, PODC (2012)Google Scholar
  21. 21.
    Hasemann, H., Hirvonen, J., Rybicki, J., Suomela, J.: Deterministic Local Algorithms, Unique Identifiers, and Fractional Graph Colouring. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 48–60. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Hanckowiak, M., Karonski, M., Panconesi, A.: On the Distributed Complexity of Computing Maximal Matchings. SIAM J. Discrete Math. 15(1), 41–57 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kor, L., Korman, A., Peleg, D.: Tight Bounds For Distributed MST Verification. In: Proc. 28th Int. Symp. on Theoretical Aspects of Computer Science, STACS (2011)Google Scholar
  24. 24.
    Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Distributed Computing 20, 253–266 (2007)CrossRefGoogle Scholar
  25. 25.
    Korman, A., Kutten, S., Masuzawa, T.: Fast and Compact Self-Stabilizing Verification, Computation, and Fault Detection of an MST. In: Proc. 30th ACM Symp. on Principles of Distributed Computing, PODC (2011)Google Scholar
  26. 26.
    Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Computing 22, 215–233 (2010)CrossRefGoogle Scholar
  27. 27.
    Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Detailed version,
  28. 28.
    Korman, A., Sereni, J.S., Viennot, L.: Toward More Localized Local Algorithms: Removing Assumptions Concerning Global Knowledge. In: Proc. 30th ACM Symp. on Principles of Distributed Computing, PODC, pp. 49–58 (2011)Google Scholar
  29. 29.
    Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: Proc. 21st ACM Symp. on Parallel Algorithms and Architectures, SPAA, pp. 138–144 (2009)Google Scholar
  30. 30.
    Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Lotker, Z., Patt-Shamir, B., Rosen, A.: Distributed Approximate Matching. SIAM J. Comput. 39(2), 445–460 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15, 1036–1053 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Panconesi, A., Srinivasan, A.: On the Complexity of Distributed Network Decomposition. J. Algorithms 20(2), 356–374 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)Google Scholar
  36. 36.
    Seinsche, D.: On a property of the class of n-colorable graphs. J. Combinatorial Theory, Ser. B 16, 191–193 (1974)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pierre Fraigniaud
    • 1
  • Magnús M. Halldórsson
    • 2
  • Amos Korman
    • 1
  1. 1.CNRS and University Paris DiderotFrance
  2. 2.ICE-TCS, School of Computer ScienceReykjavik UniversityIceland

Personalised recommendations