Skip to main content

Statistical Inference from Ill-known Data Using Belief Functions

  • Conference paper
Uncertainty Analysis in Econometrics with Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 200))

  • 1621 Accesses

Abstract

As a general formalism for uncertain reasoning, the theory of belief functions extends the logical and probabilistic approaches to uncertainty: a belief function (or a completely monotone Choquet capacity) can be seen both as a non additive measure and as a generalized set. In this paper, the theory of belief functions is argued to be a suitable framework for statistical analysis of low quality, i.e., imprecise and/or partially reliable data. After a reminder of general concepts of the theory, we show how this approach can be applied to statistical inference by viewing the normalized likelihood function as defining a consonant belief function. The links with likelihood-based and Bayesian inference are discussed.We then show how this method can be extended to the analysis of uncertain data. The approach is illustrated using a running example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aickin, M.: Connecting Dempster-Shafer belief functions with likelihood-based inference. Synthese 123, 347–364 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnard, G.A., Jenkins, G.M., Winsten, C.B.: Likelihood inference and time series. Journal of the Royal Statistical Society 125(3), 321–372 (1962)

    Article  Google Scholar 

  3. Birnbaum, A.: On the foundations of statistical inference. Journal of the American Statistical Association 57(298), 269–306 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Côme, E., Oukhellou, L., Denœux, T., Aknin, P.: Learning from partially supervised data using mixture models and belief functions. Pattern Recognition 42(3), 334–348 (2009)

    Article  MATH  Google Scholar 

  5. Cox, D.R.: Some remarks on statistical aspects of econometrics. In: Panaretos, J. (ed.) Stochastics Musings. Lawrence Erlbaum, Mahwah (2003)

    Google Scholar 

  6. Dempster, A.P.: New methods for reasoning towards posterior distributions based on sample data. Annals of Mathematical Statistics 37, 355–374 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dempster, A.P.: A generalization of Bayesian inference (with discussion). J. R. Statistical Society B 30, 205–247 (1968)

    MathSciNet  MATH  Google Scholar 

  9. Dempster, A.P.: Upper and lower probabilities generated by a random closed interval. Annals of Mathematical Statistics 39(3), 957–966 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Denœux, T.: Extending stochastic ordering to belief functions on the real line. Information Sciences 179, 1362–1376 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Denœux, T.: Maximum likelihood from evidential data: an extension of the EM algorithm. In: Borgelt, C., et al. (eds.) Combining Soft Computing and Statistical Methods in Data Analysis (Proceedings of SMPS 2010), Oviedeo, Spain. AISC, pp. 181–188. Springer (2010)

    Google Scholar 

  13. Denœux, T.: Maximum likelihood estimation from fuzzy data using the fuzzy EM algorithm. Fuzzy Sets and Systems 18(1), 72–91 (2011)

    Article  Google Scholar 

  14. Denœux, T.: Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Transactions on Knowledge and Data Engineering (to appear, 2012), doi:10.1109/TKDE.2011.201

    Google Scholar 

  15. Denœux, T., Masson, M.-H.: EVCLUS: Evidential clustering of proximity data. IEEE Trans. on Systems, Man and Cybernetics B 34(1), 95–109 (2004)

    Article  Google Scholar 

  16. Dubois, D.: Possibility theory and statistical reasoning. Computational Statistics and Data Analysis 51(1), 47–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dubois, D., Denœux, T.: Statistical inference with belief functions and possibility measures: a discussion of basic assumptions. In: Borgelt, C., et al. (eds.) Combining Soft Computing and Statistical Methods in Data Analysis (Proceedings of SMPS 2010), Oviedo, Spain. AISC, pp. 217–225. Springer (2010)

    Google Scholar 

  18. Dubois, D., Prade, H.: A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets. International Journal of General Systems 12(3), 193–226 (1986)

    Article  MathSciNet  Google Scholar 

  19. Dubois, D., Prade, H.: Possibility Theory: An approach to computerized processing of uncertainty. Plenum Press, New York (1988)

    MATH  Google Scholar 

  20. Edwards, A.W.F.: Likelihood (expanded edition). The John Hopkins University Press, Baltimore (1992)

    Google Scholar 

  21. Ferraro, M.B., Coppi, R., González Rodríguez, G., Colubi, A.: A linear regression model for imprecise response. International Journal of Approximate Reasoning 51(7), 759–770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heckman, J.J.: Econometrics and empirical economics. Journal of Econometrics 100, 3–5 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hudson, D.J.: Interval estimation from the likelihood function. J. R. Statistical Society B 33(2), 256–262 (1973)

    MathSciNet  Google Scholar 

  24. Nguyen, H.T.: An Introduction to Random Sets. Chapman and Hall/CRC Press, Boca Raton, Florida (2006)

    Book  MATH  Google Scholar 

  25. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  26. Shafer, G.: Allocations of probability. Annals of Probability 7(5), 827–839 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shafer, G.: Constructive probability. Synthese 48(1), 1–60 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shafer, G.: Belief functions and parametric models (with discussion). J. Roy. Statist. Soc. Ser. B 44, 322–352 (1982)

    MathSciNet  MATH  Google Scholar 

  29. Smets, P.: Resolving misunderstandings about belief functions. International Journal of Approximate Reasoning 6, 321–344 (1990)

    Article  Google Scholar 

  30. Smets, P.: Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning 9, 1–35 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Smets, P.: The Transferable Belief Model for quantified belief representation. In: Gabbay, D.M., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1, pp. 267–301. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  32. Smets, P.: Belief functions on real numbers. International Journal of Approximate Reasoning 40(3), 181–223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Smets, P., Kennes, R.: The Transferable Belief Model. Artificial Intelligence 66, 191–243 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sprott, D.A.: Statistical Inference in Science. Springer, Berlin (2000)

    MATH  Google Scholar 

  35. Walley, P.: Belief function representations of statistical evidence. The Annals of Statistics 15(4), 1439–1465 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    MATH  Google Scholar 

  37. Wasserman, L.A.: Belief functions and statistical evidence. The Canadian Journal of Statistics 18(3), 183–196 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yager, R.R.: The entailment principle for Dempster-Shafer granules. Int. J. of Intelligent Systems 1, 247–262 (1986)

    Article  MATH  Google Scholar 

  39. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Denœux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Denœux, T. (2013). Statistical Inference from Ill-known Data Using Belief Functions. In: Huynh, VN., Kreinovich, V., Sriboonchitta, S., Suriya, K. (eds) Uncertainty Analysis in Econometrics with Applications. Advances in Intelligent Systems and Computing, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35443-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35443-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35442-7

  • Online ISBN: 978-3-642-35443-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics