Skip to main content

Gradient Projection Learning for Parametric Nonrigid Registration

  • Conference paper
  • 2185 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7588))

Abstract

A potentially large anatomical variability among subjects in a population makes nonrigid image registration techniques prone to inaccuracies and to high computational costs in their optimisation. In this paper, we propose a new learning-based approach to accelerate the convergence rate of any chosen parametric energy-based image registration method. From a set of training images and their corresponding deformations, our method learns offline a projection from the gradient space of the energy functional to the parameter space of the chosen registration method using partial least squares. Combined with a regularisation term, the learnt projection is subsequently used online to approximate the optimisation of the energy functional for unseen images. We employ the B-spline approach as underlying registration method, but other parametric methods can be used as well. We perform experiments on synthetic image data and MR cardiac sequences to show that our approach significantly accelerates the convergence -in number of iterations and total computational cost- of the chosen registration method, while achieving similar results in terms of accuracy.

This work was partially funded by CONICYT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1-3), 185–203 (1981)

    Article  Google Scholar 

  2. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  3. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)

    Article  Google Scholar 

  4. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)

    Article  Google Scholar 

  5. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)

    Article  Google Scholar 

  6. Little, J.A., Hill, D.L.G., Hawkes, D.J.: Deformations incorporating rigid structures. In: Computer Vision and Image Understanding, vol. 66, pp. 223–232 (1997)

    Google Scholar 

  7. Yoshida, H.: Removal of normal anatomic structures in radiographs using wavelet-based nonlinear variational method for image matching. In: Proceedings of SPIE, vol. 3458, p. 174 (1998)

    Google Scholar 

  8. Ashburner, J., Friston, K.J.: Nonlinear spatial normalization using basis functions. Human Brain Mapping 7(4), 254–266 (1999)

    Article  Google Scholar 

  9. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  10. Wu, Y.T., Kanade, T., Li, C.C., Cohn, J.: Image registration using wavelet-based motion model. International Journal of Computer Vision 38(2), 129–152 (2000)

    Article  MATH  Google Scholar 

  11. Fornefett, M., Rohr, K., Stiehl, H.S.: Radial basis functions with compact support for elastic registration of medical images. Image and Vision Computing 19(1), 87–96 (2001)

    Article  Google Scholar 

  12. Xue, Z., Shen, D., Davatzikos, C.: Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping. Medical Image Analysis 10(5), 740–751 (2006)

    Article  Google Scholar 

  13. Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Temporal subtraction of thorax CR images using a statistical deformation model. IEEE Transactions on Medical Imaging 22(11), 1490–1504 (2003)

    Article  Google Scholar 

  14. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Transactions on Medical Imaging 22(8), 1014–1025 (2003)

    Article  Google Scholar 

  15. Tang, S., Fan, Y., Wu, G., Kim, M., Shen, D.: RABBIT: rapid alignment of brains by building intermediate templates. NeuroImage 47(4), 1277–1287 (2009)

    Article  Google Scholar 

  16. Pszczolkowski, S., Pizarro, L., Guerrero, R., Rueckert, D.: Nonrigid free-form registration using landmark-based statistical deformation models. In: Proceedings of SPIE, vol. 8314, p. 831418 (2012)

    Google Scholar 

  17. Tian, Y., Narasimhan, S.G.: A globally optimal data-driven approach for image distortion estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1277–1284. IEEE (2010)

    Google Scholar 

  18. Batmanghelich, N., Taskar, B., Davatzikos, C.: Generative-Discriminative basis learning for medical imaging. IEEE Transactions on Medical Imaging (2011)

    Google Scholar 

  19. Wu, G., Qi, F., Shen, D.: Learning Best Features and Deformation Statistics for Hierarchical Registration of MR Brain Images. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 160–171. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Ablitt, N.A., Gao, J., Keegan, J., Stegger, L., Firmin, D.N., Yang, G.Z.: Predictive cardiac motion modeling and correction with partial least squares regression. IEEE Transactions on Medical Imaging 23(10), 1315–1324 (2004)

    Article  Google Scholar 

  21. Kim, M., Wu, G., Yap, P., Shen, D.: A General Fast Registration framework by learning deformation-appearance correlation. IEEE Transactions on Image Processing (99), 1823–1833 (2011)

    Google Scholar 

  22. Zikic, D., Kamen, A., Navab, N.: Natural gradients for deformable registration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2847–2854. IEEE (2010)

    Google Scholar 

  23. Klein, S., Staring, M., Andersson, P., Pluim, J.P.W.: Preconditioned Stochastic Gradient Descent Optimisation for Monomodal Image Registration. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 549–556. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Wahba, G.: Spline models for observational data, vol. 59. Society for Industrial Mathematics (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pszczolkowski, S., Pizarro, L., O’Regan, D.P., Rueckert, D. (2012). Gradient Projection Learning for Parametric Nonrigid Registration. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2012. Lecture Notes in Computer Science, vol 7588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35428-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35428-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35427-4

  • Online ISBN: 978-3-642-35428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics