Skip to main content

Learning Correspondences in Knee MR Images from the Osteoarthritis Initiative

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7588))

Included in the following conference series:

  • 2128 Accesses

Abstract

Registration is a powerful tool that allows mapping images in a common space in order to aid in their analysis. Accurate registration of images of the knee is challenging to achieve using intensity based registration algorithms. Problems arise due to large anatomical inter-subject differences which causes registrations to fail to converge to an accurate solution. In this work we propose learning correspondences in pairs of images to match self-similarity features, that describe images in terms of their local structure rather than their intensity. We use RANSAC as a robust model estimator. We show a substantial improvement in terms of mean error and standard deviation of 2.13mm and 2.47mm over intensity based registration methods, when comparing landmark alignment error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  2. Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: The Use of Active Shape Models for Locating Structures in Medical Images. In: Barrett, H.H., Gmitro, A.F. (eds.) IPMI 1993. LNCS, vol. 687, pp. 33–47. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  3. Carballido-Gamio, J., Majumdar, S.: Atlas-based knee cartilage assessment. Magnetic Resonance in Medicine 66(2), 574–583 (2011)

    Article  Google Scholar 

  4. Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage 46(3), 726–738 (2009)

    Article  Google Scholar 

  5. Donoghue, C., Rao, A., Bull, A.M.J., Rueckert, D.: Manifold learning for automatically predicting articular cartilage morphology in the knee with data from the osteoarthritis initiative (OAI). In: SPIE Medical Imaging, vol. 7962 (2011)

    Google Scholar 

  6. Rohr, K., Stiehl, H.S., Sprengel, R., Buzug, T.M., Weese, J., Kuhn, M.H.: Landmark-based elastic registration using approximating thin-plate splines. IEEE Transactions on Medical Imaging 20(6), 526–534 (2001)

    Article  Google Scholar 

  7. Pennec, X., Guttmann, C.R.G., Thirion, J.-P.: Feature-Based Registration of Medical Images: Estimation and Validation of the Pose Accuracy. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1107–1114. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Rohr, K.: On 3D differential operators for detecting point landmarks. Image and Vision Computing 15(3), 219–233 (1997)

    Article  Google Scholar 

  9. Hamm, J., Ye, D.H., Verma, R., Davatzikos, C.: GRAM: A framework for geodesic registration on anatomical manifolds. Medical Image Analysis 14(5), 633–642 (2010)

    Article  Google Scholar 

  10. Jia, H., Wu, G., Wang, Q., Wang, Y., Kim, M., Shen, D.: Directed graph based image registration. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society 36(2), 139–151 (2012)

    Article  Google Scholar 

  11. Guerrero, R., Pizarro, L., Wolz, R., Rueckert, D.: Landmark localisation in brain MR images using feature point descriptors based on 3D local self-similarities. In: IEEE International Symposium on Biomedical Imaging, pp. 1535–1538 (2012)

    Google Scholar 

  12. Shechtman, E., Irani, M.: Matching Local Self-Similarities across Images and Videos. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  13. Hoyer, P.O., Dayan, P.: Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5, 1457–1469 (2004)

    MATH  Google Scholar 

  14. Fua, P.: A parallel stereo algorithm that produces dense depth maps and preserves image features. Machine Vision and Applications 6(1), 35–49 (1993)

    Article  Google Scholar 

  15. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  16. Peterfy, C., Schneider, E., Nevitt, M.: The osteoarthritis initiative: report on the design rationale for the magnetic resosnace imaging protocol for the knee. Osteoarthritis and Cartilage 16(12), 1433–1441 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guerrero, R., Donoghue, C.R., Pizarro, L., Rueckert, D. (2012). Learning Correspondences in Knee MR Images from the Osteoarthritis Initiative. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2012. Lecture Notes in Computer Science, vol 7588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35428-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35428-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35427-4

  • Online ISBN: 978-3-642-35428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics