Skip to main content

Graph-Based Inter-subject Classification of Local fMRI Patterns

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7588))

Abstract

Classification of medical images in multi-subjects settings is a difficult challenge due to the variability that exists between individuals. Here we introduce a new graph-based framework designed to deal with inter-subject functional variability present in fMRI data. A graphical model is constructed to encode the functional, geometric and structural properties of local activation patterns. We then design a specific graph kernel, allowing to conduct SVM classification in graph space. Experiments conducted in an inter-subject classification task of patterns recorded in the auditory cortex show that it is the only approach to perform above chance level, among a wide range of tested methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auzias, G., Lefèvre, J., Le Troter, A., Fischer, C., Perrot, M., Régis, J., Coulon, O.: Model-Driven Harmonic Parameterization of the Cortical Surface. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS (LNAI), vol. 6892, pp. 310–317. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Caputo, B., Sim, K., Furesjo, F., Smola, A.: Appearance-based object recognition using svms: which kernel should i use? In: Proc. of NIPS Workshop on Stat. Methods for Computational Experiments in Visual Processing and Computer Vision (2002)

    Google Scholar 

  3. Clithero, J.A., Smith, D.V., Carter, R.M., Huettel, S.A.: Within- and cross-participant classifiers reveal different neural coding of information. NeuroImage 56(2), 699–708 (2011); Multivariate Decoding and Brain Reading

    Google Scholar 

  4. Van Essen, D.C., Dierker, D.L.: Surface-Based and probabilistic atlases of primate cerebral cortex. Neuron 56(2), 209–225 (2007)

    Article  Google Scholar 

  5. Flandin, G., Kherif, F., Pennec, X., Malandain, G., Ayache, N., Poline, J.-B.: Improved Detection Sensitivity in Functional MRI Data Using a Brain Parcelling Technique. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 467–474. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Gärtner, T.: Exponential and geometric kernels for graphs. In: NIPS Workshop on Unreal Data: Principles of Modeling Nonvectorial Data (2002)

    Google Scholar 

  7. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, UC Santa Cruz (1999)

    Google Scholar 

  8. Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P.: Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539), 2425–2430 (2001)

    Article  Google Scholar 

  9. Haxby, J.V., Guntupalli, J.S., Connolly, A.C., Halchenko, Y.O., Conroy, B.R., Gobbini, M.I., Hanke, M., Ramadge, P.J.: A common, High-Dimensional model of the representational space in human ventral temporal cortex. Neuron 72(2), 404–416 (2011)

    Article  Google Scholar 

  10. Humphries, C., Liebenthal, E., Binder, J.R.: Tonotopic organization of human auditory cortex. NeuroImage 50(3), 1202–1211 (2010)

    Article  Google Scholar 

  11. Mahé, P., Vert, J.P.: Graph kernels based on tree patterns for molecules. Machine Learning 75, 3–35 (2009)

    Article  Google Scholar 

  12. Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., Thirion, B.: A supervised clustering approach for fMRI-based inference of brain states. Pattern Recognition 45(6), 2041–2049 (2012)

    Article  MATH  Google Scholar 

  13. Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences 10(9), 424–430 (2006)

    Article  Google Scholar 

  14. Pavlidis, T.: Structural pattern recognition. Springer (1977)

    Google Scholar 

  15. Poldrack, R.A., Halchenko, Y.O., Hanson, S.J.: Decoding the Large-Scale structure of brain function by classifying mental states across individuals. Psychological Science 20(11), 1364–1372 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takerkart, S., Auzias, G., Thirion, B., Schön, D., Ralaivola, L. (2012). Graph-Based Inter-subject Classification of Local fMRI Patterns. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2012. Lecture Notes in Computer Science, vol 7588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35428-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35428-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35427-4

  • Online ISBN: 978-3-642-35428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics