Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 847 Accesses

Abstract

Microfibrillar reinforced composites (MFC) are polymer–polymer composites in which both the isotropic matrix and the fibrous anisotropic reinforcements are formed in-situ during processing [1,2]. MFC materials promise both improved properties during service and low ash content after incineration [3-5]. The first feature is required to replace metals by light-weight parts in automobiles. The second feature is a European legislative request [6-8] that must be met in the future. In many practical applications that MFCs are designed for, the materials are subjected to cyclic (dynamic) load. Hence, resistance [9] to dynamic loads (i.e. low fatigue [10-12]) is required. In this chapter we examine the evolution of the nanostructure under slow load-cycling in HDPE/PA oriented MFC precursors that have not been subjected to the final compression molding processing step which removes [13,14] the orientation of the HDPE matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evstatiev, M., Fakirov, S.: Microfibrillar reinforcement of polymer blends. Polymer 33, 877–880 (1992)

    Article  CAS  Google Scholar 

  2. Denchev, Z.Z., Dencheva, N.V.: Transforming polymer blends into composites: a pathway towards nanostructured materials. Polym. Int. 57, 11–22 (2008)

    Article  CAS  Google Scholar 

  3. Fakirov, S., Evstatiev, M.: Microfibrillar reinforced composites—new materials from polymer blends. Adv. Mater. 6, 395–398 (1994)

    Google Scholar 

  4. Fakirov, S., Evstatiev, M., Friedrich, K.: Microfibrillar reinforced composites—another approach to polymer blend processing. In: Paul, D.R., Bucknall, C.D. (eds.) Polymer Blends, vol. 2, p. 455. Wiley, New York (2000)

    Google Scholar 

  5. Alcock, A., Cabrera, N.O., Barkoula, N.M., Reynolds, C.T., Govaert, L.E., Peijs, T.: The effect of temperature and strain rate on the mechanical properties of highly oriented polypropylene tapes and all-polypropylene composites. Compos. Sci. Technol. 67, 2061–2070 (2007)

    Article  CAS  Google Scholar 

  6. Roy, C., Chaala, A.: Vacuum pyrolysis of automobile shredder residues. Resour. Conserv. Recycl. 32, 1–27 (2001)

    Article  Google Scholar 

  7. Day, M., Shen, Z., Cooney, J.D.: Pyrolysis of auto shredder residue: experiments with a laboratory screw kiln reactor. J. Anal. Appl. Pyrolysis 51, 181–200 (1999)

    Article  CAS  Google Scholar 

  8. Mark, F.E., Fisher, M.M., Smith, K.A.: Energy recovery from automotive shredder residue through co-combustion with municipal solid waste. In: Mark, F.E., Fisher, M.M., Smith, K.A. (eds.) Energy Recovery from Automotive Shredder Residue, pp. 158–175. Association of Plastics Manufacturers in Europe (APME), Brussels (1998)

    Google Scholar 

  9. Thorby, D.: Structural Dynamics and Vibration in Practice, 1st edn. Butterworth-Heinemann, Amsterdam (2008)

    Google Scholar 

  10. Peterlin, A.: Mechanical properties of polymeric solids. Ann. Rev. Mater. Sci. 2, 349–380 (1972)

    Article  CAS  Google Scholar 

  11. Takemori, M.T.: Polymer fatigue. Ann. Rev. Mater. Sci. 14, 171–204 (1984)

    Article  CAS  Google Scholar 

  12. Crist, B.: The ultimate strength and stiffness of polymers. Ann. Rev. Mater. Sci. 25, 295–323 (1995)

    Article  CAS  Google Scholar 

  13. Dencheva, N., Denchev, Z.Z., Oliveira, M.J., Funari, S.S.: Microstructure studies of in-situ composites based on polyethylene/polyamide 12 blends. Macromolecules 43, 4715–4726 (2010)

    Article  CAS  Google Scholar 

  14. Dencheva, N., Oliveira, M.J., Carneiro, O.S., Pouzada, A.S., Denchev, Z.: Preparation and structure development in microfibrilar composite materials based on polyethylene-polyamide 6 oriented blends. J. Appl. Polym. Sci. 115, 2918–2932 (2010)

    Article  CAS  Google Scholar 

  15. Dencheva, N., Oliveira, M.J., Pouzada, A.S., Kearns, M.P., Denchev, Z.Z.: Mechanical properties of polyamide 6 reinforced microfibrilar composites. Polymer Composites 32, 407–417 (2011)

    Article  CAS  Google Scholar 

  16. Peterlin, A.: Morphology and properties of crystalline polymers with fiber structure. Text. Res. J. 42, 20–30 (1972)

    Article  CAS  Google Scholar 

  17. Porod, G.: Application and results of small-angle X-Ray scattering from solid polymers (Ger.) Fortschr. Hochpolym.-Forsch. 2, 363–400 (1961)

    Google Scholar 

  18. Statton, W.O.: Microvoids in fibers as studied by small-angle scattering of X-rays. J. Polym. Sci. 58, 205–220 (1962)

    Article  CAS  Google Scholar 

  19. Kumar, S., Warner, S., Grubb, D.T., Adams, W.W.: On the small-angle X-ray scattering of rigid-rod polymer fibers. Polymer 35, 5408–5412 (1994)

    Article  CAS  Google Scholar 

  20. Humbert, S., Lame, O., Chenal, J.-M., Rochas, C., Vigier, G.: Small strain behavior of polyethylene: in situ SAXS measurements. J. Polym. Sci. Part B: Polym. Phys. 48, 1535–1542 (2010)

    Article  CAS  Google Scholar 

  21. Fröhlich, R., Thomann, R., Mülhaupt, R.: Toughened epoxy hybrid nanocomposites containing both an organophilic layered silicate filler and a compatibilized liquid rubber. Macromolecules 36, 7205–7211 (2003)

    Article  Google Scholar 

  22. Díez-Pascual, A.M., Naffakh, M., González-Domínguez, J., Ansón, A., Martinéz-Rubi, Y., Martinéz, M.T., Simard, B., Gómez, M.A.: High performance PEEK/carbon nanotube composites compatibilized with polysulfones-II. Mechanical and electrical properties. Carbon 48, 3500–3511 (2010)

    Article  Google Scholar 

  23. Földes, E.: Study of the effects influencing additive migration in polymers. Angew. Makromol. Chem. 261–265, 65–76 (1998)

    Article  Google Scholar 

  24. Burch, H.E., Scott, C.E.: Effect of viscosity ratio on structure evolution in miscible polymer blends. Polymer 42, 7313–7325 (2001)

    Article  CAS  Google Scholar 

  25. Thirtha, V., Lehman, R., Nosker, T.: Effect of additives on the composition dependent glass transition variation in PS/PP blends. J. Appl. Polym. Sci. 107, 3987–3992 (2008)

    Article  CAS  Google Scholar 

  26. Stribeck, N., Nöchel, U., Funari, S.S., Schubert, T., Timmann, A.: Nanostructure evolution in polypropylene during mechanical testing. Macromol. Chem. Phys. 209, 1992–2002 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeinolebadi, A. (2013). HDPE/PA Microfibrillar Composites Under Load-Cycling. In: In-situ Small-Angle X-ray Scattering Investigation of Transient Nanostructure of Multi-phase Polymer Materials Under Mechanical Deformation. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35413-7_6

Download citation

Publish with us

Policies and ethics