Skip to main content

CIID Frailty Models and Implied Copulas

  • Conference paper
  • First Online:
Copulae in Mathematical and Quantitative Finance

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 213))

Abstract

A unified stochastic framework for all portfolio default models with conditionally independent and identically distributed (CIID) default times is presented. Desirable statistical properties of dependent default times are introduced in an axiomatic manner and related to the unified framework. It is shown how commonly used models, stemming from quite different mathematical and economic motivations, can be translated into a multivariate frailty model. After a discussion of popular specifications, two new models are introduced. The vector of default times in the first approach has an Archimax survival copula. The second innovation is capable of producing default pattern with interesting statistical properties. The motivation for the latter approach is to add an additional source of jump frailty to a classical intensity-based approach. An approximation of the portfolio-loss distribution is available in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The starting point might be a multivariate structural-default model, a certain dependence structure/copula for the vector of default times, a frailty model, or some latent-factor construction.

  2. 2.

    The most important ones being risk-management and the pricing of portfolio derivatives.

  3. 3.

    We focus on the pricing of insurance premia for tranches of a credit portfolio. Note, however, that applications to other insurance portfolios can be treated similarly.

  4. 4.

    A typical convention for credit derivatives is d = 125, insurance portfolios are often larger.

  5. 5.

    For instance, [32] use a Student t-distribution, [29, 35] a Normal Inverse Gaussian (NIG) distribution, and [4] a general infinitely divisible distribution. In a related fashion, [53] assumes a positive random variable as market factor and constructs the model in such a way that the default times have an Archimedean survival copula. However, M is a single random variable in all aforementioned models, which equals the random parameter of a parametric family of distribution functions.

  6. 6.

    The resulting survival copula of (τ 1, , τ d ) is of Marshall–Olkin kind, see [43]. The Marshall–Olkin distribution is well studied and has several desirable properties for dependent defaults: an interpretation as a frailty model, asymmetric tail dependencies, and a singular component, i.e. positive joint default probabilities. Hence, Marshall–Olkin distributions have already been proposed for credit- and insurance-risk applications by [28, 40]. However, it is well known that the Marshall–Olkin distribution is characterized by the lack-of-memory property, see, e.g., [7, 27, 47]. This implies a somewhat unrealistic assumption for dependent defaults, since it excludes direct contagion effects.

  7. 7.

    Thus, this important measure of dependence is related to the specification of F t in a rather simple way. The derivation of (10.4) is straightforward and therefore omitted.

  8. 8.

    The first line indicates the idea of [53]: starting from the canonical construction of a default time with distribution function tp(t), see [54, p. 122], dependent trigger variables (V 1, , V d ) are used as the source of dependence.

  9. 9.

    If one wishes to define default times in such a way that they have \(C_{\varphi }\) as copula instead of survival copula, one must use \(F_{t} :=\exp \big (-{M\,\varphi }^{-1}\big(p(t)\big)\big)\), t ≥ 0. This can be deduced by replacing (V 1, , V d ) in the above derivation by (1 − V 1, , 1 − V d ). This alternative ansatz can be used to switch tail dependencies: the lower tail dependence of \(C_{\varphi }\) equals the upper tail dependence of its survival copula, and vice versa. Since lower tail dependence between default times is desirable, one should use the latter approach when \(C_{\varphi }\) exhibits lower tail dependence and the first approach when \(C_{\varphi }\) exhibits upper tail dependence.

  10. 10.

    This construction contains the simple Marshall–Olkin model with one armageddon shock of [13] as a special case. Rewriting this example in this framework, the subordinator Λ must be linearly increasing until a single jump to infinity simultaneously destroys all components.

  11. 11.

    This result can be validated for the subclasses of Archimedean and Marshall–Olkin survival copulas: the case \(\bar{M} \equiv 1\) gives λ l  = 2 − Ψ(2) ∕ Ψ(1), which agrees with the result obtained in the model of [44]. Similarly, the case Λ t  = t, t ≥ 0, leads to \(\varLambda _{l} = 2 - 2\,\lim {_{t\downarrow 0}\varphi }^{^{\prime}}(2\,t){/\varphi }^{^{\prime}}(t)\), which agrees with the tail dependence parameter in the model of [53]. Higher-dimensional dependence measures can be retrieved from results in [39].

  12. 12.

    The above argument makes use of the explicit form of the Laplace transform of an integrated basic affine intensity. If the intensity {λ t } t ≥ 0 is specified differently, one might end up with positive tail dependence. Giving one example, assume that \(\varLambda _{t} :=\bar{ M}\) for a positive random variable \(\bar{M}\) with Laplace transform \(\varphi\), i.e. \(M_{t} =\bar{ M}\,t\), t ≥ 0. The resulting dependence structure is of Archimedean kind, and there are choices for \(\bar{M}\) that imply positive tail dependence. A related observation is that for \(\varLambda _{t} :=\bar{ M}\, \frac{\partial } {\partial t}\big{(\varphi }^{-1}(1 - p(t))\big)\), the model of [53] is a special case of the intensity approach.

References

  1. Abate, J., Choudhury, G.L., Whitt, W.: On the Laguerre method for numerically inverting Laplace transforms. Informs. J. Comput. 8(4), 413–427 (1996)

    Article  MATH  Google Scholar 

  2. Abate, J., Valkó, P.: Comparison of sequence accelerators for the Gaver Method of numerical Laplace transform inversion. Comput. Math. Appl. 48, 629–636 (2002)

    Google Scholar 

  3. Abate, J., Valkó, P.: Multi-precision Laplace transform inversion. Int. J. Numer. Methods Eng. 60, 979–993 (2004)

    Article  MATH  Google Scholar 

  4. Albrecher, H., Ladoucette, S.A., Schoutens, W.: A generic one-factor Lévy model for pricing synthetic CDOs. Advances in Mathematical Finance (Applied and Numerical Harmonic Analysis) Birkhäuser Boston 259–278 (2007)

    Google Scholar 

  5. Andersen, L., Sidenius, J., Basu, S.: All your hedges in one basket. Risk Mag. 67–72 (2003)

    Google Scholar 

  6. Applebaum, D.: Lévy processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing: Probability Models. Holt Rinehart and Winston, New York (1975)

    Google Scholar 

  8. Baxter, M.: Dynamic modelling of single-name credits and CDO tranches. Working paper - Nomura Fixed Income Quant Group retrievable from http://www.nomura.com/resources/europe/pdfs/dynamiccdomodelling2.pdf (2006). Accessed January 14, 2012

  9. Bernhart, G., Escobar Anel, M., Mai, J.-F., Scherer, M.: Default models based on scale mixtures of Marshall-Olkin Copulas: properties and applications. Metrika 76, 179–203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernhart, G., Mai, J.-F., Scherer, M., Schenk, S.: The density of distributions from the Bondesson class. J. Comput. Financ. (2012, Forthcoming)

    Google Scholar 

  11. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  12. Bertoin, J.: Subordinators: Examples and Applications. Springer École d’Été de Probabilités de Saint-Flour XXVII-1997. Lect. Notes Math. 1717, 1–91 (1999)

    Google Scholar 

  13. Burtschell, X., Gregory, J., Laurent, J-P.: A comparative analysis of CDO pricing models. In: Meissner, G. (ed.) The Definitive Guide to CDOs, Chapter 15, pp. 389–427, Risk Books, Incisive Media, London (2009)

    Google Scholar 

  14. Capéraà, P., Fougères, A.-L., Genest, C.: Bivariate distributions with given extreme value attractor. J. Multivar. Anal. 72, 30–49 (2000)

    Article  MATH  Google Scholar 

  15. Carr, P., Geman, H., Madan, D., Yor, M.: Stochastic volatility for Lévy processes. Math. Financ. 13, 345–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Charpentier, A., Segers, J.: Tails of multivariate Archimedean copulas. J. Multivar. Anal. 100(7), 1521–1537 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cuadras Avellanas, C.M., Augé, J.: A continuous general multivariate distribution and its properties. Comm. Stat. A Theory Method. 10(4), 339–353 (1981)

    Article  Google Scholar 

  18. Das, S.R., Duffie, D., Kapadia, N., Saita, L.: Common failings: How corporate defaults are correlated. J. Financ. 62(1), 93–117 (2007)

    Article  Google Scholar 

  19. De Finetti, B.: La prévision: Ses lois logiques ses sources subjectives. Annales de l’Institut Henri Poincaré 7, 1–68 (1937)

    Google Scholar 

  20. Dobránszky, P., Schoutens, W.: Generic Lévy one-factor models for the joint modelling of prepayment and default: Modelling LCDX. Technical report 08-03. Section of Statistics K.U. Leuven (2009)

    Google Scholar 

  21. Duffie, D., Singleton, K.: Modeling term structures of defaultable bonds. Rev. Financ. Stud. 12(4), 687–720 (1999)

    Article  Google Scholar 

  22. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Duffie, D., Gârleanu, N.: Risk and valuation of collateralized debt obligations. Financ. Anal. J. 57(1), 41–59 (2001)

    Article  Google Scholar 

  24. Duffie, D., Saita, L., Wang, K.: Multi-period corporate default prediction with stochastic covariates. J. Financ. Econ. 83, 635–665 (2007)

    Article  Google Scholar 

  25. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New York (1966)

    Google Scholar 

  26. Frey, R., McNeil, A.J.: Modelling Dependent Defaults. Working paper available at http://e-collection.ethbib.ethz.ch/show?type=bericht\&nr=273 (2001). Accessed January 14, 2012

  27. Galambos, J., Kotz, S.: Characterizations of probability distributions. In: Lecture Notes in Mathematics, vol. 675. Springer, Heidelberg (1978)

    Google Scholar 

  28. Giesecke, K.: A simple exponential model for dependent defaults. J. Fixed Income 13(3), 74–83 (2003)

    Article  Google Scholar 

  29. Guégan, D., Houdain, J.: Collateralized Debt Obligations pricing and factor models: A new methodology using Normal Inverse Gaussian distributions. Research Report IDHE-MORA ENS Cachan 7 (2005)

    Google Scholar 

  30. Hering, C., Hofert, M., Mai, J.-F., Scherer, M.: Constructing hierarchical Archimedean copulas with Lévy subordinators. J. Multivar. Anal. 101(6), 1428–1433 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hofert, M., Scherer, M.: CDO pricing with nested Archimedean copulas. Quant. Financ. 11(5), 775–787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hull, J., White, A.: Valuation of a CDO and an n-th to default CDS without monte carlo simulation. J. Derivatives 12(2), 8–23 (2004)

    Article  Google Scholar 

  33. Jarrow, R.A., Turnbull, S.: Pricing derivatives on financial securities subject to credit risk. J. Financ. 50(1), 53–85 (1995)

    Article  Google Scholar 

  34. Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall/CRC, University of Bristish Colombia, Vancouver (1997)

    Book  MATH  Google Scholar 

  35. Kalemanova, A., Schmid, B., Werner, R.: The normal inverse gaussian distribution for synthetic CDO pricing. J. Derivatives 14(3), 80–93 (2007)

    Article  Google Scholar 

  36. Kiesel, R., Lutz, M.: Efficient pricing of constant maturity swap spread options in a stochastic volatility LIBOR market model. J. Comput. Financ. 14(4), 37–72 (2011)

    Google Scholar 

  37. Lando, D.: On cox processes and credit risky securities. Rev. Derivatives Res. 2(2–3), 99–120 (1998)

    Google Scholar 

  38. Li, D.X.: On default correlation: A copula function approach. J. Fixed Income 9(4), 43–54 (2000)

    Article  Google Scholar 

  39. Li, H.: Orthant tail dependence of multivariate extreme value distributions. J. Multivar. Anal. 100(1), 243–256 (2009)

    Article  MATH  Google Scholar 

  40. Lindskog, F., McNeil, A.J.: Common poisson shock models: Applications to insurance and credit risk modelling. Astin Bull. 33(2), 209–238 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Loève, M.: Probability Theory I, 4th edn. Springer, Heidelberg (1977)

    Book  MATH  Google Scholar 

  42. Madan, D.B., Unal, H.: Pricing the risks of default. Rev. Derivatives Res. 2(2–3), 121–160 (1998)

    Google Scholar 

  43. Mai, J.-F., Scherer, M.: Reparameterizing Marshall–Olkin copulas with applications to sampling. J. Stat. Comput. Simul. 81(1), 59–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mai, J.-F., Scherer, M.: A tractable multivariate default model based on a stochastic time-change. Int. J. Theo. Appl. Financ. 12(2), 227–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mai, J.-F., Scherer, M.: Lévy-frailty copulas. J. Multivar. Anal. 100(7), 1567–1585 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mai, J.-F., Scherer, M.: H-extendible copulas. J. Multivar. Anal. 11, 151–160 (2012)

    Article  MathSciNet  Google Scholar 

  47. Marshall, A.W., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 62, 30–44 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  48. Marshall, A.W., Olkin, I.: Families of multivariate distributions. J. Am. Stat. Assoc. 83, 834–841 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  50. Merton, R.: On the pricing of corporate debt: The risk structure of interest rates. J. Financ. 29, 449–470 (1974)

    Google Scholar 

  51. Moosbrucker, T.: Pricing CDOs with Correlated Variance Gamma Distributions. Research Report Department of Banking University of Cologne, Albertus-Magnus-Platz (2006)

    Google Scholar 

  52. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  53. Schönbucher, P.J.: Taken to the limit: Simple and not-so-simple loan loss distributions. Working paper retrievable from http://www.gloriamundi.org/picsresources/pjs.pdf (2002). Accessed January 14, 2012

  54. Schönbucher, P.J.: Credit Derivatives Pricing Models. Wiley, New York (2003)

    Google Scholar 

  55. Schoutens, W.: Lévy processes in Finance: Pricing financial derivatives. Wiley Series in Probability and Statistics. Wiley, Chichester, England (2003)

    Book  Google Scholar 

  56. Talbot, A.: The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl. 23, 97–120 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  57. Vasicek, O.: Probability of loss on loan portfolio. Working paper KMV Corporation (1987)

    Google Scholar 

  58. Yu, F.: Correlated defaults in intensity-based models. Math. Financ. 17(2), 155–173 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Scherer .

Editor information

Editors and Affiliations

Appendix

Appendix

10.1.1 Lévy Subordinators

A Lévy subordinator Λ = { Λ t } t ≥ 0 is a non-decreasing stochastic process. It starts at zero, is stochastically continuous, and has stationary and independent increments. Standard textbooks on this theory comprise [6, 11, 12, 52, 55]. A Lévy subordinator is uniquely characterized by its Laplace transforms, which admit the form

$$\displaystyle{ \mathbb{E}\big[{e}^{-x\,\varLambda _{t} }\big] = {e}^{-t\,\varPsi (x)},\quad \forall \,x \geq 0,\,t \geq 0, }$$

for a function Ψ : [0, ) → [0, ) which has a completely monotone derivative and satisfies Ψ(0) = 0, see [25, p. 450]. The function Ψ is called Laplace exponent of Λ and is strictly increasing unless Λ t  ≡ 0.

10.1.1.1 Proof of Lemma 10.1

The first statement follows immediately from the Theorem of Glivenko–Cantelli, see [41, p. 20]: conditioned on {F t } t ≥ 0, {L t } t ≥ 0 is precisely the empirical distribution function of the law {F t } t ≥ 0 based on d samples. Hence,

$$\displaystyle\begin{array}{rcl} \mathbb{P}\Big(\lim _{d\rightarrow \infty }\,\sup _{t\geq 0}\big\vert F_{t} - L_{t}\big\vert = 0\Big)& =& \mathbb{E}\Big[\mathbb{P}\Big(\lim _{d\rightarrow \infty }\,\sup _{t\geq 0}\big\vert F_{t} - L_{t}\big\vert = 0\,\Big\vert \,\{F_{t}\}_{t\geq 0}\Big)\Big] {}\\ & =& \mathbb{E}[1] = 1. {}\\ \end{array}$$

For the second statement, immediate computations show that

$$\displaystyle{ \mathbb{E}\big[L_{t}^{2}\big] = \frac{1} {d}\,\mathbb{E}[F_{t}] + \frac{d - 1} {d} \,\mathbb{E}[F_{t}^{2}],\quad \mathbb{E}[L_{ t}\,F_{t}] = \mathbb{E}[F_{t}^{2}], }$$

which implies that

$$\displaystyle{ \int _{[0,T]}\mathbb{E}\big[{(L_{t} - F_{t})}^{2}\big]\,dt = \frac{1} {d}\,\int _{[0,T]}\big(\mathbb{E}[F_{t}] - \mathbb{E}[F_{t}^{2}]\big)\,dt\quad { d \rightarrow \infty \atop \rightarrow } \quad 0. }$$

The claim is established. □ 

10.1.1.2 Proof of Zero Tail Dependence in the Model of Sect. 10.2.5

The first step is to compute for β and α, given in (10.8) and (10.9), that

$$\displaystyle{{ \alpha }^{^{\prime}}(x,0) :=\lim _{t\downarrow 0} \frac{d} {dt}\alpha (x,t){ ({\ast}) \atop =} 0,{\quad \beta }^{^{\prime}}(x,0) :=\lim _{t\downarrow 0} \frac{d} {dt}\beta (x,t){ ({\ast}{\ast}) \atop =} - x,\quad x > 0. }$$

Both ( ∗ ) and ( ∗ ∗ ) are tedious computations that become simpler with the identities

$$\displaystyle\begin{array}{rcl} c(x) + d(x)& =& -\frac{\sqrt{{\kappa }^{2 } + {2\sigma }^{2 } x}} {x} ,\quad c(x) - d(x) = - \frac{\kappa } {x}, {}\\ c(x) - d(x)& =& \frac{{\sigma }^{2}} {2x},\quad \frac{b(x)} {c(x) + d(x)} = x. {}\\ \end{array}$$

Then, using formula (10.7), one computes with L’Hospital’s rule thatFootnote 12

$$\displaystyle\begin{array}{rcl} \varLambda _{l}& =& \lim _{t\downarrow 0}\frac{\mathbb{E}\big[F_{t}^{2}\big]} {\mathbb{E}[F_{t}]} =\lim _{t\downarrow 0}\Bigg\{1 + \frac{{e}^{\alpha (2,t)+\beta (2,t)\,\varLambda _{0}} - {e}^{\alpha (1,t)+\beta (1,t)\,\varLambda _{0}}} {1 - {e}^{\alpha (1,t)+\beta (1,t)\,\varLambda _{0}}} \Bigg\} {}\\ & =& 2 {-\frac{{\alpha }^{^{\prime}}(2,0) {+\beta }^{^{\prime}}(2,0)\,\varLambda _{0}} {\alpha }^{^{\prime}}(1,0) {+\beta }^{^{\prime}}(1,0)\,\varLambda _{0}} = 0. {}\\ \end{array}$$

10.1.1.3 Proof of Theorem 10.1

For \(t_{1},\ldots ,t_{d} \in [0,\infty )\) with ordered list t (1) ≤  ≤ t (d) and t (0) : = 0 one has

$$\displaystyle{ \sum _{i=1}^{d}(d\,+\,1\,-\,i)\,\big(\varLambda _{ t_{(i)}}\,-\,\varLambda _{t_{(i-1)}}\big)\,=\,\sum _{i\,=\,1}^{d}(d\,+\,1\,-\,i)\,\varLambda _{ t_{(i)}}\,-\,\sum _{i=0}^{d-1}(d\,-\,i)\,\varLambda _{ t_{(i)}}\,=\sum _{i=1}^{d}\varLambda _{ t_{i}}. }$$

Since Λ is a Lévy process, the vector of increments \(\big(\varLambda _{t_{(d)}} - \varLambda _{t_{(d-1)}},\ldots ,\varLambda _{t_{(1)}} - \varLambda _{t_{(0)}}\big)\) has independent components and \(\varLambda _{t_{(i)}} - \varLambda _{t_{(i-1)}}\) is equal in distribution to \(\varLambda _{t_{(i)}-t_{(i-1)}}\). Consequently

$$\displaystyle{ \mathbb{E}\left [{e}^{-\sum _{i=1}^{d}\varLambda _{ t_{i}}}\right ] =\prod _{ i=1}^{d}\mathbb{E}\left [{e}^{-(d+1-i)\,\varLambda _{(t_{(i)}-t_{(i-1)})}}\right ] =\prod _{ i=1}^{d}{e}^{-(t_{(i)}-t_{(i-1)})\,\varPsi (d+1-i)}. }$$

Secondly, compute the joint survival function (using the above identity)

$$\displaystyle\begin{array}{rcl} & & G(t_{1},\ldots ,t_{d}) := \mathbb{P}\big(\tau _{1} > t_{1},\ldots ,\tau _{d} > t_{d}\big) {}\\ & & \quad = \mathbb{P}\big(\epsilon _{1} > \varLambda _{\bar{{M}\,\varphi }^{-1}(1-p(t_{1}))/\varPsi (1)},\ldots ,\epsilon _{d} > \varLambda _{\bar{{M}\,\varphi }^{-1}(1-p(t_{d}))/\varPsi (1)}\big) {}\\ & & \quad = \mathbb{E}\left [\exp \Big(-\sum _{i=1}^{d}\varLambda _{\bar{{ M}\,\varphi }^{-1}(1-p(t_{i}))/\varPsi (1)}\Big)\right ] {}\\ & & \quad = \mathbb{E}\left [\mathbb{E}\left [\exp \Big(-\sum _{i=1}^{d}\varLambda _{\bar{{ M}\,\varphi }^{-1}(1-p(t_{i}))/\varPsi (1)}\Big)\Big\vert \bar{M}\right ]\right ] {}\\ & & \quad = \mathbb{E}\left [\exp \Big(\,-\, \frac{\bar{M}} {\varPsi (1)}\sum _{i=1}^{d}\varPsi (d + 1\,-\,i)\big{(\varphi }^{-1}(1\,-\,p(t_{ (i)})) {-\varphi }^{-1}(1\,-\,p(t_{ (i\,-\,1)})\big)\Big)\right ] {}\\ & & \quad =\varphi \Big ( \frac{1} {\varPsi (1)}\sum _{i=1}^{d}\varPsi (d + 1 - i)\big{(\varphi }^{-1}(1 - p(t_{ (i)})) {-\varphi }^{-1}(1 - p(t_{ (i-1)})\big)\Big) {}\\ & & \quad =\varphi \Big ( \frac{1} {\varPsi (1)}\sum _{i=1}^{d}{\varphi }^{-1}(1 - p(t_{ (d+1-i)}))\big(\varPsi (i) - \varPsi (i - 1)\big)\Big). {}\\ \end{array}$$

The last step involves expanding the sum of differences to two sums and shifting the summation index in the second sum by one. The resulting sums can then be recombined using Ψ(0) = 0.

Thirdly, for the margins one obtains using similar arguments

$$\displaystyle{ \mathbb{P}\big(\tau _{i} > t\big) = \mathbb{P}\big(\epsilon _{i} > \varLambda _{\bar{{M}\,\varphi }^{-1}(1-p(t))/\varPsi (1)}\big) = 1 - p(t),\quad i = 1,\ldots ,d,\quad t \geq 0. }$$

Thus, τ i is distributed according to p(t). Finally, using the survival analogue of Sklar’s Theorem, see [49, p. 195], there exists a unique copula \(\hat{C}\), called the survival copula of \((\tau _{1},\ldots ,\tau _{d})\), which satisfies

$$\displaystyle{ G(t_{1},\ldots ,t_{d}) =\hat{ C}\big(1 - p(t_{1}),\ldots ,1 - p(t_{d})\big). }$$

Testing the copula claimed in (10.10), one finds

$$\displaystyle{ \hat{C}\big(1 - p(t_{1}),\ldots ,1 - p(t_{d})\big) =\varphi \Big ( \frac{1} {\varPsi (1)}\sum _{i=1}^{d}{\varphi }^{-1}(1 - p(t_{ (d+1-i)}))\big(\varPsi (i) - \varPsi (i - 1)\big)\Big). }$$

Thus, the claim is established by the uniqueness of the survival copula. □ 

10.1.1.4 Proof of Lemma 10.2

The claimed composition of different distribution functions to a new one is based on an elementary decomposition of a distribution function. Considering only two intervals [0, T 1] and (T 1, T 2], it is easy to verify for t ∈ [0, T 2] that

$$\displaystyle\begin{array}{rcl} \mathbb{P}(\tau \leq t)& =& \nVdash _{\{t\in [0,T_{1}]\}}\,\mathbb{P}(\tau \leq t) + {}\\ & & \qquad \nVdash _{\{t\in (T_{1},T_{2}]\}}\,\mathbb{P}(\tau \leq T_{1})\,\Big(1 + \frac{\mathbb{P}(\tau > T_{1})} {\mathbb{P}(\tau \leq T_{1})}\,\mathbb{P}(\tau \leq t\,\vert \,\tau > T_{1})\Big). {}\\ \end{array}$$

The crucial observation from this elementary computation is that having determined the distribution \(p_{1}(t) := \mathbb{P}(\tau \leq t)\) on [0, T 1] already, to determine the distribution on [0, T 2] it suffices to determine \(p_{2}(u) := \mathbb{P}(\tau \leq u + T_{1}\,\vert \,\tau > T_{1})\) for u ∈ (0, T 2 − T 1]. However, the function p 2 is a proper distribution function on [0, ). Hence, starting with two given distribution functions p 1, p 2, the claimed composition of those yields a proper distribution function with the interpretation that p 2 is the conditional distribution in case of survival until time T 1. The general case K > 2 is now easily obtained by iterating the above argument.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mai, JF., Scherer, M., Zagst, R. (2013). CIID Frailty Models and Implied Copulas. In: Jaworski, P., Durante, F., Härdle, W. (eds) Copulae in Mathematical and Quantitative Finance. Lecture Notes in Statistics(), vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35407-6_10

Download citation

Publish with us

Policies and ethics