Skip to main content

How to Enhance the Security on the Least Significant Bit

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7712))

Abstract

Scalar multiplication, which computes dP for a given point P and a scalar d, is the dominant computation part of Elliptic Curve Cryptosystems (ECC). Recently, Side Channel Attacks (SCA) on scalar multiplication have become real threats. This is why secure and efficient scalar multiplication is important for ECC, and many countermeasures have been proposed so far. The Montgomery Ladder and the Regular right-to-left algorithm are the simplest and the most elegant algorithms. However, they are vulnerable to an SCA on the Least Significant Bit (LSB). In this paper, we investigate how to enhance the LSB security without spoiling the original features of simplicity. Our elegant techniques make the previous schemes secure against the SCA on LSB, while maintaining original performances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akishita, T., Takagi, T.: Zero-Value Point Attacks on Elliptic Curve Cryptosystem. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Baek, Y.-J.: Regular 2w -ary right-to-left exponentiation algorithm with very efficient DPA and FA countermeasures. International Journal of Information Security 9, 363–370 (2010)

    Article  Google Scholar 

  3. Ciet, M., Joye, M.: (Virtually) Free Randomization Techniques for Elliptic Curve Cryptography. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 348–359. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography (Discrete Mathematics and Its Applications). Chapman and Hall/CRC (July 2005)

    Google Scholar 

  5. Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation Using Mixed Coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Goubin, L.: A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–210. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Goundar, R.R., Joye, M., Miyaji, A.: Co-Z Addition Formulæ and Binary Ladders on Elliptic Curves (Extended Abstract). In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 65–79. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication on Weierstraß elliptic curves from co-Z arithmetic. Journal of Cryptographic Engineering 1(2), 161–176 (2011)

    Article  Google Scholar 

  10. Itoh, K., Izu, T., Takenaka, M.: Efficient Countermeasures Against Power Analysis for Elliptic Curve Cryptosystems. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) Smart Card Research and Advanced Applications VI. IFIP, vol. 153, pp. 99–113. Springer, Boston (2004)

    Chapter  Google Scholar 

  11. Joye, M.: Highly Regular Right-to-Left Algorithms for Scalar Multiplication. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Joye, M.: Highly Regular m-Ary Powering Ladders. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 350–363. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Joye, M., Karroumi, M.: Memory-Efficient Fault Countermeasures. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 84–101. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Joye, M., Tymen, C.: Protections against Differential Analysis for Elliptic Curve Cryptography. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 377–390. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  16. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Google Scholar 

  17. Longa, P.: ECC point arithmetic formulae (EPAF), http://patricklonga.bravehost.com/jacobian.html

  18. Longa, P., Gebotys, C.: Novel Precomputation Schemes for Elliptic Curve Cryptosystems. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 71–88. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Mamiya, H., Miyaji, A., Morimoto, H.: Efficient Countermeasures against RPA, DPA, and SPA. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 343–356. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Mamiya, H., Miyaji, A., Morimoto, H.: Secure elliptic curve exponentiation against RPA, ZRA, DPA, and SPA. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 89-A(8), 2207–2215 (2006)

    Article  Google Scholar 

  21. Meloni, N.: New Point Addition Formulae for ECC Applications. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Miyaji, A.: Generalized scalar multiplication secure against SPA, DPA, and RPA. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 91-A(10), 2833–2842 (2008)

    Article  Google Scholar 

  23. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Okeya, K., Sakurai, K.: On Insecurity of the Side Channel Attack Countermeasure Using Addition-Subtraction Chains under Distinguishability between Addition and Doubling. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 420–435. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Yen, S.-M., Joye, M.: Checking before output may not be enough against fault-based cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miyaji, A., Mo, Y. (2012). How to Enhance the Security on the Least Significant Bit. In: Pieprzyk, J., Sadeghi, AR., Manulis, M. (eds) Cryptology and Network Security. CANS 2012. Lecture Notes in Computer Science, vol 7712. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35404-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35404-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35403-8

  • Online ISBN: 978-3-642-35404-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics