Skip to main content

Fast and Secure Root Finding for Code-Based Cryptosystems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7712))

Abstract

In this work we analyze five previously published respectively trivial approaches and two new hybrid variants for the task of finding the roots of the error locator polynomial during the decryption operation of code-based encryption schemes. We compare the performance of these algorithms and show that optimizations concerning finite field element representations play a key role for the speed of software implementations. Furthermore, we point out a number of timing attack vulnerabilities that can arise in root-finding algorithms, some aimed at recovering the message, others at the secret support. We give experimental results of software implementations showing that manifestations of these vulnerabilities are present in straightforward implementations of most of the root-finding variants presented in this work. As a result, we find that one of the variants provides security with respect to all vulnerabilities as well as competitive computation time for code parameters that minimize the public key size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DSN Progress Report 42-44, 114–116 (1978)

    Google Scholar 

  2. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems Control Inform. Theory 15(2), 159–166 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and Practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 47–62. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Heyse, S.: Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 165–181. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for Embedded Devices. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 49–64. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Shoufan, A., Wink, T., Molter, G., Huss, S., Strenzke, F.: A Novel Processor Architecture for McEliece Cryptosystem and FPGA Platforms. In: ASAP 2009: Proceedings of the 2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors, pp. 98–105. IEEE Computer Society, Washington, DC (2009)

    Google Scholar 

  7. Strenzke, F.: A Smart Card Implementation of the McEliece PKC. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 47–59. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Molter, H.G., Stöttinger, M., Shoufan, A., Strenzke, F.: A Simple Power Analysis Attack on a McEliece Cryptoprocessor. Journal of Cryptographic Engineering (2011)

    Google Scholar 

  9. Strenzke, F., Tews, E., Gregor Molter, H., Overbeck, R., Shoufan, A.: Side Channels in the McEliece PKC. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 216–229. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Strenzke, F.: A Timing Attack against the Secret Permutation in the McEliece PKC. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 95–107. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Shoufan, A., Strenzke, F., Gregor Molter, H., Stöttinger, M.: A Timing Attack against Patterson Algorithm in the McEliece PKC. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 161–175. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Heyse, S., Moradi, A., Paar, C.: Practical Power Analysis Attacks on Software Implementations of McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 108–125. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Strenzke, F.: Message-aimed Side Channel and Fault Attacks against Public Key Cryptosystems with homomorphic Properties. Journal of Cryptographic Engineering (2011), doi:10.1007/s13389-011-0020-0; a preliminary version appeared at COSADE 2011

    Google Scholar 

  14. Federenko, S., Trifonov, P.: Finding Roots of Polynomials over Finite Fields. IEEE Transactions on Communications 20, 1709–1711 (2002)

    Article  Google Scholar 

  15. Biswas, B., Sendrier, N.: HyMES - an open source implementation of the McEliece cryptosystem (2008), http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes

  16. Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of Computation 24(111), 713–715 (1970)

    Article  MathSciNet  Google Scholar 

  17. Goppa, V.D.: A new class of linear correcting codes. Problems of Information Transmission 6, 207–212 (1970)

    MathSciNet  Google Scholar 

  18. Patterson, N.: Algebraic decoding of Goppa codes. IEEE Trans. Info. Theory 21, 203–207 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Biswas, B., Herbert, V.: Efficient Root Finding of Polynomials over Fields of Characteristic 2. WEWoRK (2009), http://hal.inria.fr/hal-00626997/PDF/tbz.pdf

  20. Kobara, K., Imai, H.: Semantically Secure McEliece Public-Key Cryptosystems - Conversions for McEliece PKC. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Overbeck, R.: An Analysis of Side Channels in the McEliece PKC (2008), https://www.cosic.esat.kuleuven.be/nato_arw/slides_participants/Overbeck_slides_nato08.pdf

  22. Bernstein, D.J., Lange, T., Peters, C.: Attacking and Defending the McEliece Cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Bernstein, D.J.: List Decoding for Binary Goppa Codes. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 62–80. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Strenzke, F. (2012). Fast and Secure Root Finding for Code-Based Cryptosystems. In: Pieprzyk, J., Sadeghi, AR., Manulis, M. (eds) Cryptology and Network Security. CANS 2012. Lecture Notes in Computer Science, vol 7712. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35404-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35404-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35403-8

  • Online ISBN: 978-3-642-35404-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics