Advertisement

Exotic Options

  • Norbert Hilber
  • Oleg Reichmann
  • Christoph Schwab
  • Christoph Winter
Part of the Springer Finance book series (FINANCE)

Abstract

Options with more sophisticated rules than those for plain vanillas are called exotic options. There are different types. Path dependent options depend on the whole history of the underlying and not just on the realization at maturity. In particular, we consider barrier options which depend on price levels being attained over a period and Asian options which depend on the average price of the option’s underlying over a period. Furthermore, we look at options which have different exercise styles like compound options which are options on options and swing options which have multiple exercise rights. We assume that the dynamics of the stock price is modeled by a geometric Brownian motion.

Keywords

Option Price Geometric Brownian Motion Barrier Option Asian Option Compound Option 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 32.
    R. Carmona and N. Touzi. Optimal multiple stopping and valuation of swing options. Math. Finance, 18(2):239–268, 2008. MathSciNetzbMATHCrossRefGoogle Scholar
  2. 49.
    M. Dahlgren. A continuous time model to price commodity-based swing options. Rev. Deriv. Res., 8(1):27–47, 2005. MathSciNetzbMATHCrossRefGoogle Scholar
  3. 69.
    R. Geske. The valuation of compound options. J. Financ. Econ., 7(1):63–81, 1979. CrossRefGoogle Scholar
  4. 91.
    J. Ingersoll. Theory of financial decision making. Rowman & Littlefield Publishers, Inc., Oxford, 1987. Google Scholar
  5. 103.
    A.G.Z. Kemna and A.C.F. Vorst. A pricing method for options based on average asset values. J. Bank. Finance, 14(1):113–129, 2002. CrossRefGoogle Scholar
  6. 124.
    R.C. Merton. Theory of rational option pricing. Bell J. Econ. Manag. Sci., 4:141–183, 1973. MathSciNetCrossRefGoogle Scholar
  7. 142.
    L. Rogers and Z. Shi. The value of an Asian option. J. Appl. Probab., 32(4):1077–1088, 1995. MathSciNetzbMATHCrossRefGoogle Scholar
  8. 157.
    J. Vecer. Unified Asian pricing. Risk, 15(6):113–116, 2002. Google Scholar
  9. 160.
    M. Wilhelm and Ch. Winter. Finite element valuation of swing options. J. Comput. Finance, 11(3):107–132, 2008. Google Scholar
  10. 167.
    R. Zvan, P.A. Forsyth, and K.R. Vetzal. PDE methods for pricing barrier options. J. Econ. Dyn. Control, 24(11–12):1563–1590, 2000. MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Norbert Hilber
    • 1
  • Oleg Reichmann
    • 2
  • Christoph Schwab
    • 2
  • Christoph Winter
    • 3
  1. 1.Dept. for Banking, Finance, Insurance, School of Management and LawZurich University of Applied SciencesWinterthurSwitzerland
  2. 2.Seminar for Applied MathematicsSwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  3. 3.Allianz Deutschland AGMunichGermany

Personalised recommendations