Advertisement

Multidimensional Feller Processes

  • Norbert Hilber
  • Oleg Reichmann
  • Christoph Schwab
  • Christoph Winter
Part of the Springer Finance book series (FINANCE)

Abstract

In this chapter, we extend the setting of Chap.  14 to a more general class of processes. We consider a large class of Markov processes in the following. Under certain assumptions we can apply the theory of pseudodifferential operators in order to analyse the arising pricing equations. The dependence structure of the purely discontinuous part of the market model X is described using Lévy copulas. Wavelets are used for the discretization and preconditioning of the arising PIDEs, which are of variable order with the order depending on the jump state.

Keywords

Option Price Market Model Variable Order Pseudodifferential Operator Infinitesimal Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.
    D. Applebaum. Lévy processes and stochastic calculus, volume 93 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2004. zbMATHCrossRefGoogle Scholar
  2. 7.
    O. Barndorff-Nielsen and S.Z. Levendorskiǐ. Feller processes of normal inverse Gaussian type. Quant. Finance, 1:318–331, 2001. MathSciNetCrossRefGoogle Scholar
  3. 8.
    O.E. Barndorff-Nielsen. Normal inverse Gaussian processes and the modelling of stock returns. Research report 300, Department of Theoretical Statistics, Aarhus University, 1995. Google Scholar
  4. 18.
    J. Bertoin. Lévy processes. Cambridge University Press, New York, 1996. zbMATHGoogle Scholar
  5. 22.
    J.M. Bony, Ph. Courrège, and P. Priouret. Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum. Ann. Inst. Fourier (Grenoble), 18(2):369–521, 1968. MathSciNetzbMATHCrossRefGoogle Scholar
  6. 34.
    P. Carr. Local variance gamma. Technical report, Private communication, 2009. Google Scholar
  7. 35.
    P. Carr, H. Geman, D. Madan, and M. Yor. From local volatility to local Lévy models. Quant. Finance, 4(5):581–588, 2004. MathSciNetCrossRefGoogle Scholar
  8. 44.
    Ph. Courrège. Sur la forme intégro-differentielle des opérateurs de \({C}^{\infty}_{k}\) dans C satisfaisant du principe du maximum. Sém. Théorie du Potentiel, 38:38 pp., 1965/1966. Google Scholar
  9. 61.
    E. Eberlein, A. Papapantoleon, and A.N. Shiryaev. On the duality principle in option pricing: semimartingale setting. Finance Stoch., 12(2):265–292, 2008. MathSciNetzbMATHCrossRefGoogle Scholar
  10. 85.
    W. Hoh. Pseudodifferential operators generating Markov processes. Habilitationsschrift, University of Bielefeld, 1998. Google Scholar
  11. 86.
    W. Hoh. Pseudodifferential operators with negative definite symbols of variable order. Rev. Mat. Iberoam., 16:219–241, 2000. MathSciNetzbMATHCrossRefGoogle Scholar
  12. 92.
    K. Ito and K. Kunisch. Semi-smooth Newton methods for variational inequalities of the first kind. M2AN Math. Model. Numer. Anal., 37:41–62, 2003. MathSciNetzbMATHCrossRefGoogle Scholar
  13. 93.
    K. Ito and K. Kunisch. Parabolic variational inequalities: the Lagrange multiplier approach. J. Math. Pures Appl., 85:415–449, 2005. MathSciNetGoogle Scholar
  14. 94.
    N. Jacob. Pseudo differential operators and Markov processes, Vol. I: Fourier analysis and semigroups. Imperial College Press, London, 2001. CrossRefGoogle Scholar
  15. 95.
    N. Jacob. Pseudo differential operators and Markov processes, Vol. II: Generators and their potential theory. Imperial College Press, London, 2002. zbMATHCrossRefGoogle Scholar
  16. 96.
    N. Jacob and R. Schilling. Subordination in the sense of S. Bochner—an approach through pseudo differential operators. Math. Nachr., 178:199–231, 1996. MathSciNetzbMATHCrossRefGoogle Scholar
  17. 97.
    J. Jacod and A. Shiryaev. Limit theorems for stochastic processes, 2nd edition. Springer, Heidelberg, 2003. zbMATHCrossRefGoogle Scholar
  18. 104.
    K. Kikuchi and A. Negoro. On Markov process generated by pseudodifferential operator of variable order. Osaka J. Math., 34:319–335, 1997. MathSciNetzbMATHGoogle Scholar
  19. 106.
    V. Knopova and R.L. Schilling. Transition density estimates for a class of Lévy and Lévy-type processes. J. Theor. Probab., 25(1):144–170, 2012. MathSciNetzbMATHCrossRefGoogle Scholar
  20. 119.
    D.B. Madan and E. Seneta. The variance gamma model for share market returns. J. Bus., 63:511–524, 1990. CrossRefGoogle Scholar
  21. 134.
    N. Reich, Ch. Schwab, and Ch. Winter. On Kolmogorov equations for anisotropic multivariate Lévy processes. Finance Stoch., 14(4):527–567, 2010. MathSciNetzbMATHCrossRefGoogle Scholar
  22. 135.
    O. Reichmann. Numerical option pricing beyond Lévy. PhD thesis, ETH Zürich, Dissertation No. 20202, 2012. http://e-collection.library.ethz.ch/view/eth:5357.
  23. 137.
    O. Reichmann, R. Schneider, and Ch. Schwab. Wavelet solution of variable order pseudodifferential equations. Calcolo, 47(2):65–101, 2010. MathSciNetzbMATHCrossRefGoogle Scholar
  24. 138.
    O. Reichmann and Ch. Schwab. Numerical analysis of additive Lévy and Feller processes with applications to option pricing. In Lévy matters I, volume 2001 of Lecture Notes in Mathematics, pages 137–196, 2010. CrossRefGoogle Scholar
  25. 141.
    D. Revuz and M. Yor. Continuous martingales and Brownian motion, 3rd edition. Springer, New York, 1990. Google Scholar
  26. 143.
    K. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. zbMATHGoogle Scholar
  27. 144.
    R. Schilling. On the existence of Feller processes with a given generator. Technical report, TU Dresden, 2004. http://www.math.tu-dresden.de/sto/schilling/papers/existenz.
  28. 149.
    Ch. Schwab. Variable order composite quadrature of singular and nearly singular integrals. Computing, 53(2):173–194, 1994. MathSciNetzbMATHCrossRefGoogle Scholar
  29. 163.
    Ch. Winter. Wavelet Galerkin schemes for option pricing in multidimensional Lévy models. PhD thesis, ETH Zürich, Dissertation No. 18221, 2009. http://e-collection.ethbib.ethz.ch/view/eth:41555.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Norbert Hilber
    • 1
  • Oleg Reichmann
    • 2
  • Christoph Schwab
    • 2
  • Christoph Winter
    • 3
  1. 1.Dept. for Banking, Finance, Insurance, School of Management and LawZurich University of Applied SciencesWinterthurSwitzerland
  2. 2.Seminar for Applied MathematicsSwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  3. 3.Allianz Deutschland AGMunichGermany

Personalised recommendations