Skip to main content

Part of the book series: Springer Finance ((FINANCE))

  • 6542 Accesses

Abstract

In Chap. 9, we considered pure diffusion stochastic volatility models. We extend these models by adding jumps and derive numerical solutions for different models such as Bates or Barndorff-Nielsen and Shephard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Applebaum. Lévy processes and stochastic calculus, volume 93 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  2. O.E. Barndorff-Nielsen, E. Nicolato, and N. Shephard. Some recent developments in stochastic volatility modelling. Quant. Finance, 2(1):11–23, 2002. Special issue on volatility modelling.

    Article  MathSciNet  Google Scholar 

  3. O.E. Barndorff-Nielsen and N. Shephard. Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc., Ser. B, Stat. Methodol., 63(2):167–241, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.S. Bates. Jumps stochastic volatility: the exchange rate process implicit in Deutsche Mark options. Rev. Finance, 9(1):69–107, 1996.

    Google Scholar 

  5. D.S. Bates. Post-’87 crash fears in the S&P 500 futures option market. J. Econ., 94(1–2):181–238, 2000.

    MathSciNet  MATH  Google Scholar 

  6. F.E. Benth and M. Groth. The minimal entropy martingale measure and numerical option pricing for the Barndorff-Nielsen–Shephard stochastic volatility model. Stoch. Anal. Appl., 27(5):875–896, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  7. F.E. Benth and T. Meyer-Brandis. The density process of the minimal entropy martingale measure in a stochastic volatility model with jumps. Finance Stoch., 9(4):563–575, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Beuchler, R. Schneider, and Ch. Schwab. Multiresolution weighted norm equivalences and applications. Numer. Math., 98(1):67–97, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Brockwell, E. Chadraa, and A. Lindner. Continuous-time GARCH processes. Ann. Appl. Probab., 16(2):790–826, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Carr, H. Geman, D.B. Madan, and M. Yor. Stochastic volatility for Lévy processes. Math. Finance, 13(3):345–382, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Cuchiero, D. Filipovic, E. Mayerhofer, and J. Teichmann. Affine processes on positive semidefinite matrices. Ann. Appl. Probab., 21(2):397–463, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Dimitroff, S. Lorenz, and A. Szimayer. A parsimonious multi-asset Heston model: calibration and derivative pricing. Int. J. Theor. Appl. Finance, 14(8):1299–1333, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Hilber. Stabilized wavelet methods for option pricing in high dimensional stochastic volatility models. PhD thesis, ETH Zürich, Dissertation No. 18176, 2009. http://e-collection.ethbib.ethz.ch/view/eth:41687.

  14. C. Klüppelberg, A. Lindner, and R. Maller. A continuous-time GARCH process driven by a Lévy process: stationarity and second-order behaviour. J. Appl. Probab., 41(3):601–622, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Muhle-Karbe, O. Paffel, and R. Stelzer. Option pricing in multivariate stochastic volatility models of OU type. Technical report, arXiv.org, 2010. http://arxiv.org/abs/1001.3223v1.

  16. E. Nicolato and E. Venardos. Option pricing in stochastic volatility models of the Ornstein–Uhlenbeck type. Math. Finance, 13(4):445–466, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  17. P.E. Protter. Stochastic integration and differential equations, volume 21 of Stochastic Modelling and Applied Probability, 2nd edition. Springer, Berlin, 2005.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hilber, N., Reichmann, O., Schwab, C., Winter, C. (2013). Stochastic Volatility Models with Jumps. In: Computational Methods for Quantitative Finance. Springer Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35401-4_15

Download citation

Publish with us

Policies and ethics