Advertisement

Stochastic Volatility Models with Jumps

  • Norbert Hilber
  • Oleg Reichmann
  • Christoph Schwab
  • Christoph Winter
Part of the Springer Finance book series (FINANCE)

Abstract

In Chap.  9, we considered pure diffusion stochastic volatility models. We extend these models by adding jumps and derive numerical solutions for different models such as Bates or Barndorff-Nielsen and Shephard.

Keywords

Bilinear Form Stochastic Volatility Model Price Equation Equivalent Martingale Measure Poisson Random Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.
    D. Applebaum. Lévy processes and stochastic calculus, volume 93 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2004. zbMATHCrossRefGoogle Scholar
  2. 9.
    O.E. Barndorff-Nielsen, E. Nicolato, and N. Shephard. Some recent developments in stochastic volatility modelling. Quant. Finance, 2(1):11–23, 2002. Special issue on volatility modelling. MathSciNetCrossRefGoogle Scholar
  3. 10.
    O.E. Barndorff-Nielsen and N. Shephard. Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc., Ser. B, Stat. Methodol., 63(2):167–241, 2001. MathSciNetzbMATHCrossRefGoogle Scholar
  4. 13.
    D.S. Bates. Jumps stochastic volatility: the exchange rate process implicit in Deutsche Mark options. Rev. Finance, 9(1):69–107, 1996. Google Scholar
  5. 14.
    D.S. Bates. Post-’87 crash fears in the S&P 500 futures option market. J. Econ., 94(1–2):181–238, 2000. MathSciNetzbMATHGoogle Scholar
  6. 16.
    F.E. Benth and M. Groth. The minimal entropy martingale measure and numerical option pricing for the Barndorff-Nielsen–Shephard stochastic volatility model. Stoch. Anal. Appl., 27(5):875–896, 2009. MathSciNetzbMATHCrossRefGoogle Scholar
  7. 17.
    F.E. Benth and T. Meyer-Brandis. The density process of the minimal entropy martingale measure in a stochastic volatility model with jumps. Finance Stoch., 9(4):563–575, 2005. MathSciNetzbMATHCrossRefGoogle Scholar
  8. 19.
    S. Beuchler, R. Schneider, and Ch. Schwab. Multiresolution weighted norm equivalences and applications. Numer. Math., 98(1):67–97, 2004. MathSciNetzbMATHCrossRefGoogle Scholar
  9. 30.
    P. Brockwell, E. Chadraa, and A. Lindner. Continuous-time GARCH processes. Ann. Appl. Probab., 16(2):790–826, 2006. MathSciNetzbMATHCrossRefGoogle Scholar
  10. 37.
    P. Carr, H. Geman, D.B. Madan, and M. Yor. Stochastic volatility for Lévy processes. Math. Finance, 13(3):345–382, 2003. MathSciNetzbMATHCrossRefGoogle Scholar
  11. 48.
    C. Cuchiero, D. Filipovic, E. Mayerhofer, and J. Teichmann. Affine processes on positive semidefinite matrices. Ann. Appl. Probab., 21(2):397–463, 2011. MathSciNetzbMATHCrossRefGoogle Scholar
  12. 58.
    G. Dimitroff, S. Lorenz, and A. Szimayer. A parsimonious multi-asset Heston model: calibration and derivative pricing. Int. J. Theor. Appl. Finance, 14(8):1299–1333, 2011. MathSciNetzbMATHCrossRefGoogle Scholar
  13. 80.
    N. Hilber. Stabilized wavelet methods for option pricing in high dimensional stochastic volatility models. PhD thesis, ETH Zürich, Dissertation No. 18176, 2009. http://e-collection.ethbib.ethz.ch/view/eth:41687.
  14. 105.
    C. Klüppelberg, A. Lindner, and R. Maller. A continuous-time GARCH process driven by a Lévy process: stationarity and second-order behaviour. J. Appl. Probab., 41(3):601–622, 2004. MathSciNetzbMATHCrossRefGoogle Scholar
  15. 127.
    J. Muhle-Karbe, O. Paffel, and R. Stelzer. Option pricing in multivariate stochastic volatility models of OU type. Technical report, arXiv.org, 2010. http://arxiv.org/abs/1001.3223v1.
  16. 128.
    E. Nicolato and E. Venardos. Option pricing in stochastic volatility models of the Ornstein–Uhlenbeck type. Math. Finance, 13(4):445–466, 2003. MathSciNetzbMATHCrossRefGoogle Scholar
  17. 132.
    P.E. Protter. Stochastic integration and differential equations, volume 21 of Stochastic Modelling and Applied Probability, 2nd edition. Springer, Berlin, 2005. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Norbert Hilber
    • 1
  • Oleg Reichmann
    • 2
  • Christoph Schwab
    • 2
  • Christoph Winter
    • 3
  1. 1.Dept. for Banking, Finance, Insurance, School of Management and LawZurich University of Applied SciencesWinterthurSwitzerland
  2. 2.Seminar for Applied MathematicsSwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  3. 3.Allianz Deutschland AGMunichGermany

Personalised recommendations