Skip to main content

Lévy Models

  • Chapter
  • 6506 Accesses

Part of the book series: Springer Finance ((FINANCE))

Abstract

One problem with the Black–Scholes model is that empirically observed log returns of risky assets are not normally distributed, but exhibit significant skewness and kurtosis. If large movements in the asset price occur more frequently than in the BS-model of the same variance, the tails of the distribution, should be “fatter” than in the Black–Scholes case. Another problem is that observed log-returns occasionally appear to change discontinuously. Empirically, certain price processes with no continuous component have been found to allow for a considerably better fit of observed log returns than the classical BS model. Pricing derivative contracts on such underlyings becomes more involved mathematically and also numerically since partial integro-differential equations must be solved. We consider a class of price processes which can be purely discontinuous and which contains the Wiener process as special case, the class of Lévy processes. Lévy processes contain most processes proposed as realistic models for log-returns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Applebaum. Lévy processes and stochastic calculus, volume 93 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  2. O.E. Barndorff-Nielsen. Normal inverse Gaussian processes and the modelling of stock returns. Research report 300, Department of Theoretical Statistics, Aarhus University, 1995.

    Google Scholar 

  3. J. Bertoin. Lévy processes. Cambridge University Press, New York, 1996.

    MATH  Google Scholar 

  4. I.H. Biswas. Viscosity solutions of integro-PDE: theory and numerical analysis with applications to controlled jump-diffusions. PhD thesis, University of Oslo, 2008.

    Google Scholar 

  5. S.I. Boyarchenko and S.Z. Levendorskiĭ. Non-Gaussian Merton–Black–Scholes theory, volume 9 of Advanced Series on Statistical Science & Applied Probability. World Scientific, River Edge, 2002.

    MATH  Google Scholar 

  6. M. Briani, R. Natalini, and G. Russo. Implicit-explicit numerical schemes for jump–diffusion processes. Calcolo, 44(1):33–57, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Carr, H. Geman, D.B. Madan, and M. Yor. The fine structure of assets returns: an empirical investigation. J. Bus., 75(2):305–332, 2002.

    Article  Google Scholar 

  8. R. Cont and P. Tankov. Financial modelling with jump processes. Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, 2004.

    MATH  Google Scholar 

  9. R. Cont and E. Voltchkova. A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal., 43(4):1596–1626, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Cont and E. Voltchkova. Integro-differential equations for option prices in exponential Lévy models. Finance Stoch., 9(3):299–325, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Eberlein and K. Prause. The generalized hyperbolic model: financial derivatives and risk measures. In H. Geman, D. Madan, S.R. Pliska, and T. Vorst, editors, Mathematical finance—Bachelier Congress, 2000. Springer Finance, pages 245–267. Springer, Berlin, 2002.

    Google Scholar 

  12. I.S. Gradshteyn and I.M. Ryzhik. Table of integrals, series, and products. Academic Press, New York, 1980.

    MATH  Google Scholar 

  13. J. Kallsen and P. Tankov. Characterization of dependence of multidimensional Lévy processes using Lévy copulas. J. Multivar. Anal., 97(7):1551–1572, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Kou. A jump diffusion model for option pricing. Manag. Sci., 48(8):1086–1101, 2002.

    Article  MATH  Google Scholar 

  15. D. Lamberton and M. Mikou. The critical price for the American put in an exponential Lévy model. Finance Stoch., 12(4):561–581, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Lamberton and M. Mikou. The smooth-fit property in an exponential Lévy model. J. Appl. Probab., 49(1):137–149, 2012. doi:10.1239/jap/1331216838.

    Article  MathSciNet  MATH  Google Scholar 

  17. D.B. Madan, P. Carr, and E. Chang. The variance gamma process and option pricing. Eur. Finance Rev., 2(1):79–105, 1998.

    Article  MATH  Google Scholar 

  18. R.C. Merton. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ., 3(1–2):125–144, 1976.

    Article  MATH  Google Scholar 

  19. K. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  20. W. Schoutens. Lévy processes in finance. Wiley, Chichester, 2003.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hilber, N., Reichmann, O., Schwab, C., Winter, C. (2013). Lévy Models. In: Computational Methods for Quantitative Finance. Springer Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35401-4_10

Download citation

Publish with us

Policies and ethics