Skip to main content

Extended Leap-Frog Methods for Hamiltonian Wave Equations

  • Chapter
  • First Online:
Structure-Preserving Algorithms for Oscillatory Differential Equations
  • 908 Accesses

Abstract

Structure-preserving algorithms, or multi-symplectic methods for partial differential equations, though less developed, have been considered as important as those for ordinary differential equations. In Chap. 9, the idea of ERKN methods for oscillatory ordinary differential equations is extended to the integration of oscillatory partial differential equations. Multi-symplectic discretizations of the Hamiltonian wave equations and the corresponding discrete conservation laws are investigated. The discretization by two symplectic ERKN methods in time and space, or by a symplectic ERKN method in time and a symplectic partitioned Runge–Kutta method in space, leads to a multi-symplectic integrator. Two explicit multi-symplectic extended leap-frog integrators are derived. The numerical stability and dispersive properties of the integrators are analyzed. The two integrators are applied to the linear wave equation and the sine-Gordon equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asher, U.M., McLachlan, R.I.: Multisymplectic box scheme and the Kortweg–de Vries equation. Appl. Numer. Math. 48, 255–269 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bridges, T.J.: A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities. Proc. R. Soc. Lond. Ser. A 453, 1365–1395 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bridges, T.J.: Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121, 147–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bridges, T.J., Reich, S.: Multi-symplectic integrators: numerical schemes for Hamilton PDEs that conserve symplecticity. Phys. Lett. A 284, 184–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Frank, J., Moore, B.E., Reich, S.: Linear PDEs and numerical methods that preserve a multisymplectic conservation law. SIAM J. Sci. Comput. 28, 260–277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hong, J.: A survey of multi-symplectic Runge–Kutta type methods for Hamiltonian partial differential equations. In: Li, T., Zhang, P. (eds.) Frontiers and Prospects of Contemporary Applied Mathematics, Beijing. Series in Contemporary Applied Mathematics, pp. 71–113. Higher Education Press/World Scientific, Beijing (2005)

    Google Scholar 

  8. Hong, J., Jiang, S., Li, C., Liu, H.: Explicit multi-symplectic methods for Hamilton wave equation. Commun. Comput. Phys. 2, 662–683 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Hong, J., Li, C.: Multi-symplectic Runge–Kutta methods for nonlinear Dirac equations. J. Comput. Phys. 211, 448–472 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hong, J., Liu, H., Sun, G.: The multi-symplecticity of partitioned Runge–Kutta methods for Hamiltonian PDEs. Math. Comput. 75, 167–181 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Iserles, A.A.: First Course in the Numerical Analysis of Differential Equations, 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  12. Li, Q., Song, Y., Wang, Y.: On multi-symplectic partitioned Runge–Kutta methods for Hamiltonian wave equations. Appl. Math. Comput. 177, 36–43 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, H., Zhang, K.: Multi-symplectic Runge–Kutta-type methods for Hamiltonian wave equations. IMA J. Numer. Anal. 26, 252–271 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lubich, C.: From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. European Mathematical Society, Helsinki (2008)

    Book  MATH  Google Scholar 

  15. Marsden, J.E., Patric, G.P., Shkoller, S.: Multi-symplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 4, 351–395 (1999)

    Google Scholar 

  16. McLachlan, R.I.: Symplectic integration of Hamiltonian wave equations. Numer. Math. 66, 465–492 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  18. Reich, S.: Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ryland, B.N., Mclachlan, R.I.: On multisymplectic of partitioned Runge–Kutta methods. SIAM J. Sci. Comput. 30, 1318–1340 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schober, C.M., Wlodarczyk, T.H.: Dispersive properties of multi-symplectic integrators. J. Comput. Phys. 227, 5090–5104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shi, W., Wu, X., Xia, J.: Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations. J. Comput. Phys. 231, 7671–7694 (2012)

    Article  MathSciNet  Google Scholar 

  22. Trefethen, L.N.: Group velocities in finite difference schemes. SIAM Rev. 24, 113–136 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Y.S., Qin, M.Z.: Multisymplectic schemes for the nonlinear Klein–Gordon equation. Math. Comput. Model. 36, 963–977 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, X., Wang, B., Xia, J.: Explicit symplectic multidimensional exponential fitting modified Runge–Kutta–Nyström methods. BIT Numer. Math. 52, 773–795 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, X., Wang, B., Xia, J.: Extended symplectic Runge–Kutta–Nyström integrators for separable Hamiltonian systems. In: Vigo Aguiar, J. (ed.) Proceedings of the 2010 International Conference on Computational and Mathematical Methods in Science and Engineering, vol. III, Spain, pp. 1016–1020 (2010)

    Google Scholar 

  26. Yang, H., Wu, X., You, X., Fang, Y.: Extended RKN-type methods for numerical integration of perturbed oscillators. Comput. Phys. Commun. 180, 1777–1794 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, X., You, X., Wang, B. (2013). Extended Leap-Frog Methods for Hamiltonian Wave Equations. In: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35338-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35338-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35337-6

  • Online ISBN: 978-3-642-35338-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics