Skip to main content
  • 870 Accesses

Abstract

Chapter 6 establishes the multidimensional adapted Falkner-type methods for the oscillatory second-order system y″+My=f(x,y) with a symmetric positive semi-definite principal frequency matrix M∈ℝd×d. Adapted generating functions are formulated for deriving the coefficients of adapted Falkner-type methods. Based on the discrete Gronwall’s inequality, uniform bounds for the local truncation errors of the solution and the derivative are obtained, respectively. These error bounds turn out to be independent of the frequency matrix M. Zero-stability as well as linear stability of adapted Falkner-type methods is also analyzed. The high efficiency of adapted Falkner-type methods is illustrated by numerical examples such as the coupled oscillators, the sine-Gordon equation and a nonlinear wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coleman, J.P., Ixaru, L.G.: P-stability and exponential-fitting methods for y′′=f(x,y). IMA J. Numer. Anal. 16, 179–199 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Collatz, L.: The Numerical Treatment of Differential Equations. Springer, Berlin (1966)

    Google Scholar 

  3. Falkner, V.M.: A method of numerical solution of differential equations. Philos. Mag. Ser. 7 21, 624–640 (1936)

    Google Scholar 

  4. Franco, J.M., Palacián, J.F.: High order adaptive methods of Nyström–Cowell type. J. Comput. Appl. Math. 81, 115–134 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hairer, E., Nørsett S, P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, 2nd edn. Springer Series in Computational Mathematics. Springer, Berlin (1993)

    MATH  Google Scholar 

  6. Hayes, L.J.: Galerkin alternating-direction methods for nonrectangular regions using patch approximations. SIAM J. Numer. Anal. 18, 627–643 (1987)

    Article  MathSciNet  Google Scholar 

  7. Li, J., Wang, B., You, X., Wu, X.: Two-step extended RKN methods for oscillatory systems. Comput. Phys. Commun. 182, 2486–2507 (2011)

    Article  MathSciNet  Google Scholar 

  8. Li, J., Wu, X.: Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer. Algorithms (2012). doi:10.1007/s11075-012-9583-9

    Google Scholar 

  9. López, D.J., Martín, P., Farto, J.M.: Generalization of the Störmer method for perturbed oscillators without explicit first derivatives. J. Comput. Appl. Math. 111, 123–132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ramos, H., Lorenzo, C.: Review of explicit Falkner methods and its modifications for solving special second-order I.V.P.s. Comput. Phys. Commun. 181, 1833–1841 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Swope, C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76, 637 (1982)

    Article  Google Scholar 

  12. Vigo-Aguiar, J., Ferrandiz, J.M.: A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35, 1684–1708 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for y″=f(x,y,y′). J. Comput. Appl. Math. 192, 114–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Van de Vyver, H.: Scheifele two-step methods for perturbed oscillators. J. Comput. Appl. Math. 224, 415–432 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, X.: A note on stability of multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems. Appl. Math. Model. 36, 6331–6337 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix A: Derivation of Generating Functions (6.14) and (6.15)

In what follows we verify the formula (6.14) for the coefficients β j (V).

$$ \begin{aligned} G_\beta(t,V)&=\sum _{j=0}^{\infty}\beta_j(V)t^j \\[-2pt] & =\sum_{j=0}^{\infty}(-1)^j\int _0^1(1-z)\phi_1 \bigl((1-z)^2V \bigr) \left ( \begin{array}{c}-z\\j \end{array} \right ) \,{\rm d}z\cdot t^j \\[-2pt] & =\int_0^1(1-z)\phi_1 \bigl((1-z)^2V \bigr)\sum_{j=0}^{\infty }(-t)^j \left ( \begin{array}{c}-z\\j \end{array} \right ) \,{\rm d}z \\[-2pt] & =\int_0^1(1-z)\phi_1 \bigl((1-z)^2V \bigr) (1-t)^{-z} \,{\rm d}z \\[-2pt] & =\sum_{k=0}^{\infty}\frac{(-1)^kV^k}{(2k+1)!}\int _0^1(1-z)^{2k+1}(1-t)^{-z} \,{\rm d}z. \end{aligned} $$

Integration by parts yields

$$ \int_0^1(1-z) (1-t)^{-z} \,{\rm d}z =\frac{1}{\ln(1-t)}+\frac{t}{(1-t)\ln^2(1-t)}. $$
(6.54)

For k≥1 we have

(6.55)

Based on the above analysis, we have

(6.56)

where

(6.57)
(6.58)
(6.59)

Substituting (6.57), (6.58) and (6.59) into (6.56) gives

$$ \begin{aligned}[b] G_\beta(t,V)&= \frac{1}{\ln(1-t)}\phi_1(V)+\frac{1}{(1-t)\ln^2(1-t)}I-\frac{\phi_0(V)}{\ln^2(1-t)} \\ &\quad+\frac{-V}{\ln^{2}(1-t)} G_\beta(t,V). \end{aligned} $$
(6.60)

This gives the expression for the generating functions G β (t,V) in (6.14).

The proof of the expression for \(\gamma^{*}_{j}(V)\) in (6.15) is similar.

Appendix B: Proof of (6.24)

We verify the formula (6.24) by induction on m. For m=1, the result is trivial. Assume that (6.24) holds for m=k. Then we have

$$ \begin{aligned} Q^{k+1}&=Q^kQ=\left ( \begin{array}{c@{\quad}c} \phi_{0}(k^2V) & kh\phi_{1}(k^2V)\\ -khM\phi_{1}(k^2V) & \phi_{0}(k^2V) \end{array} \right ) \left ( \begin{array}{c@{\quad}c} \phi_{0}(V) & h\phi_{1}(V)\\ -hM\phi_{1}(V) & \phi_{0}(V) \end{array} \right ) \\ &=\left ( \begin{array}{c@{\quad}c} \phi_{0} ((k+1)^2V ) & (k+1)h\phi_{1} ((k+1)^2V )\\ -(k+1)hM\phi_{1} ((k+1)^2V ) & \phi_{0} ((k+1)^2V ) \end{array} \right ). \end{aligned} $$

The last equality follows from the following equations:

$$ \begin{aligned} &c\phi_1 \bigl(c^2V\bigr)\phi_0(V)+\phi_1(V) \phi_0\bigl(c^2V\bigr)=(1+c)\phi_1 \bigl((1+c)^2V \bigr), \\ &\phi_0\bigl(c^2V\bigr)\phi_0(V)-cV \phi_1(V)\phi_1\bigl(c^2V\bigr) = \phi_0 \bigl((1+c)^2V \bigr). \end{aligned} $$
(6.61)

The first formula in (6.61) has been proved in Chap. 5 (see (5.11)). The second formula in (6.61) can be achieved by computation:

(6.62)

The material of this chapter is based on Li and Wu [8].

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, X., You, X., Wang, B. (2013). Adapted Falkner-Type Methods. In: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35338-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35338-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35337-6

  • Online ISBN: 978-3-642-35338-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics