Skip to main content
  • 899 Accesses

Abstract

In Chap. 5, multidimensional two-step extended Runge–Kutta–Nyström-type (TSERKN) methods are developed for solving the oscillatory second-order system y″+My=f(x,y), where M∈ℝd×d is a symmetric positive semi-definite matrix that implicitly contains the frequencies of the problem. The new methods inherit the framework of two-step hybrid methods and are adapted to the special features of the true flows in both the internal stages and the updates. Based on the SEN-tree theory in Chap. 3, order conditions for the TSERKN methods are derived via the B-series defined on the set SENT of trees and the B f-series defined on the subset SENT f of SENT. Three explicit TSERKN methods are constructed and their stability and phase properties are analyzed. Numerical experiments show the applicability and efficiency of the new methods in comparison with the well-known high quality methods proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chawla, M.M.: Numerov made explicit has better stability. BIT 24, 117–118 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chawla, M.M.: Two-step fourth order P-stable methods for second order differential equations. BIT 21, 190–193 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chawla, M.M., Al-Zanaidi, M.A., Boabbas, W.M.: Extended two-step P-stable methods for periodic initial-value problems. Neural Parallel Sci. Comput. 4, 505–521 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Chawla, M.M., Rao, P.S.: An explicit sixth-order method with phase-lag of order eight for y″=f(x,y). J. Comput. Appl. Math. 17, 365–368 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chawla, M.M., Sharma, S.R.: Intervals of periodicity and absolute stability of explicit Nyström methods. BIT 21, 455–464 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coleman, J.P.: Numerical methods for y″=f(x,y) via rational approximations for the cosine. IMA J. Numer. Anal. 9, 145–165 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coleman, J.P.: Order conditions for a class of two-step methods for y″=f(x,y). IMA J. Numer. Anal. 23, 197–220 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang, Y., Song, Y., Wu, X.: Trigonometrically fitted explicit Numerov-type method for periodic IVPs with two frequencies. Comput. Phys. Commun. 179, 801–811 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fang, Y., Wu, X.: A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189, 178–185 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fang, Y., Wu, X.: A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions. Appl. Numer. Math. 58, 341–351 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Franco, J.M.: A class of explicit two-step hybrid methods for second-order IVPs. J. Comput. Appl. Math. 187, 41–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Van der Houwen, P.J., Sommeijer, B.P.: Diagonally implicit Runge–Kutta–Nyström methods for oscillatory problems. SIAM J. Numer. Anal. 26, 414–429 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jain, M.K.: A modification of the Stiefel–Bettis method for nonlinear damped oscillators. BIT 28, 302–307 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Q., Wu, X.: A two-step explicit P-stable method of high phase-lag order for linear periodic IVPs. J. Comput. Appl. Math. 200, 287–296 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, J., Wang, B., You, X., Wu, X.: Two-step extended RKN methods for oscillatory systems. Comput. Phys. Commun. 182, 2486–2507 (2011)

    Article  MathSciNet  Google Scholar 

  21. Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65–75 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Simos, T.E.: Explicit eight order methods for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 119, 32–44 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Simos, T.E., Vigo-Aguiar, J.: On the construction of efficient methods for second order IVPs with oscillating solution. Int. J. Mod. Phys. C 12, 1453–1476 (2001)

    Article  MathSciNet  Google Scholar 

  24. Simos, T.E., Vigo-Aguiar, J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrodinger equation. J. Math. Chem. 31, 135–144 (2002)

    Article  MathSciNet  Google Scholar 

  25. Stavroyiannis, S., Simos, T.E.: Optimization as a function of the phase-lag order of two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59, 2467–2474 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tsitouras, C.: Explicit Numerov type methods with reduced number of stages. Comput. Math. Appl. 45, 37–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vigo-Aguiar, J., Ramos, H.: Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158, 187–211 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for y″=f(x,y,y′). J. Comput. Appl. Math. 192, 114–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vigo-Aguiar, J., Simos, T.E., Ferrándiz, J.M.: Controlling the error growth in long-term numerical integration of perturbed oscillations in one or more frequencies. Proc. R. Soc. Lond. Ser. A 460, 561–567 (2004)

    Article  MATH  Google Scholar 

  30. Van de Vyver, H.: Scheifele two-step methods for perturbed oscillators. J. Comput. Appl. Math. 224, 415–432 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, X., Wang, B.: Multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems. Comput. Phys. Commun. 181, 1955–1962 (2010)

    Article  MATH  Google Scholar 

  32. Wu, X., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. You, X., Zhang, Y., Zhao, J.: Trigonometrically-fitted Scheifele two-step methods for perturbed oscillators. Comput. Phys. Commun. 182, 1481–1490 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, X., You, X., Wang, B. (2013). Two-Step Multidimensional ERKN Methods. In: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35338-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35338-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35337-6

  • Online ISBN: 978-3-642-35338-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics