Skip to main content

Interlaminar Delamination Fracture and Fatigue of Woven Glass Fiber Reinforced Polymer Composite Laminates at Cryogenic Temperatures

  • Chapter
  • First Online:
Book cover Polymers at Cryogenic Temperatures

Abstract

This chapter describes the results of our studies on the interlaminar delamination fracture and fatigue of woven glass fiber reinforced polymer composite laminates under Mode I, Mode II, and Mode III loadings at cryogenic temperatures. Delamination fracture tests were carried out at cryogenic temperatures, and the critical energy release rate at the onset of delamination propagation, i.e., fracture toughness, was evaluated based on a finite element analysis coupled with damage. In addition, cryogenic fatigue delamination tests were performed, in order to obtain the delamination growth rate as a function of the range of the energy release rate. After the tests, fractographic observations were made to assess the delamination mechanisms at cryogenic temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chou TW, Ishikawa T (1989) Analysis and modeling of two-dimensional fabric composites. In: Chou TW, Ko FK (eds) Textile structural composites. Elsevier, New York

    Google Scholar 

  2. Mitchell N, Bauer P, Bessette D, Devred A, Gallix R, Jong C, Knaster J, Libeyre P, Lim B, Sahu A, Simon F (2009) Status of the ITER magnets. Fusion Eng Des 84:113–121

    Article  CAS  Google Scholar 

  3. Bittner-Rohrhofer K, Humer K, Weber HW, Hamada K, Sugimoto M, Okuno K (2002) Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation. J Nucl Mater 307–311:1310–1313

    Article  Google Scholar 

  4. Freeman DC Jr, Talay TA (1997) Reusable launch vehicle technology program. Acta Astronaut 41:777–790

    Article  Google Scholar 

  5. Choi S, Sankar BV (2008) Gas permeability of various graphite/epoxy composite laminates for cryogenic storage systems. Compos Part B 39:782–791

    Article  Google Scholar 

  6. Hartwig G (1988) Overview of advanced fibre composites. Cryogenics 28:216–219

    Article  CAS  Google Scholar 

  7. Kasen MB (1981) Cryogenic properties of filamentary-reinforced composites: an update. Cryogenics 21:323–340

    Article  CAS  Google Scholar 

  8. Reed RP, Golda M (1994) Cryogenic properties of unidirectional composites. Cryogenics 34:909–928

    Article  CAS  Google Scholar 

  9. Shindo Y, Wang R, Horiguchi K, Ueda S (1999) Theoretical and experimental evaluation of double-notch shear strength of G-10CR glass-cloth/epoxy laminates at cryogenic temperatures. ASME J Eng Mater Technol 121:367–373

    Article  Google Scholar 

  10. Shindo Y, Wang R, Horiguchi K (2001) Analytical and experimental studies of short-beam interlaminar shear strength of G-10CR glass-cloth/epoxy laminates at cryogenic temperatures. ASME J Eng Mater Technol 123:112–118

    Article  Google Scholar 

  11. Kumagai S, Shindo Y, Horiguchi K, Narita F (2004) Experimental and finite-element analysis of woven glass-cloth/epoxy laminate tensile specimen at room and low temperatures. Mech Adv Mater Struct 11:51–66

    Article  CAS  Google Scholar 

  12. Takeda T, Takano S, Shindo Y, Narita F (2005) Deformation and progressive failure behavior of woven-fabric-reinforced glass/epoxy composite laminates under tensile loading at cryogenic temperatures. Compos Sci Technol 65:1691–1702

    Article  CAS  Google Scholar 

  13. Shindo Y, Tokairin H, Sanada K, Horiguchi K, Kudo H (1999) Compression behavior of glass-cloth/epoxy laminates at cryogenic temperatures. Cryogenics 39:821–827

    Article  CAS  Google Scholar 

  14. Miura M, Shindo Y, Takeda T, Narita F (2010) Effect of damage on the interlaminar shear properties of hybrid composite laminates at cryogenic temperatures. Compos Struct 93:124–131

    Article  Google Scholar 

  15. Shindo Y, Takeda T, Narita F, Miura M, Watanabe S, Koizumi N, Idesaki A, Okuno K (2010) Interlaminar shear properties of composite insulation systems for fusion magnets at cryogenic temperatures. Cryogenics 50:36–42

    Article  CAS  Google Scholar 

  16. Shindo Y, Sumikawa M, Narita F, Sanada K (2005) Acoustic emission and fracture behavior of GFRP woven laminates at cryogenic temperatures. Cryogenics 45:439–449

    Article  CAS  Google Scholar 

  17. Kumagai S, Shindo Y, Inamoto A (2005) Tension–tension fatigue behavior of GFRP woven laminates at low temperatures. Cryogenics 45:123–128

    Article  CAS  Google Scholar 

  18. Shindo Y, Inamoto A, Narita F (2005) Characterization of mode I fatigue crack growth in GFRP woven laminates at low temperatures. Acta Mater 53:1389–1396

    Article  CAS  Google Scholar 

  19. Brunner AJ, Blackman BRK, Davies P (2008) A status report on delamination resistance testing of polymer-matrix composites. Eng Fract Mech 75:2779–2794

    Article  Google Scholar 

  20. O’Brien TK (1998) Interlaminar fracture toughness: the long and winding road to standardization. Compos Part B 29:57–62

    Article  Google Scholar 

  21. Tay TE (2003) Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. ASME Appl Mech Rev 56:1–31

    Article  Google Scholar 

  22. Shindo Y, Shinohe D, Kumagai S, Horiguchi K (2005) Analysis and testing of mixed-mode interlaminar fracture behavior of glass-cloth/epoxy laminates at cryogenic temperatures. ASME J Eng Mater Technol 127:468–475

    Article  CAS  Google Scholar 

  23. Shindo Y, Takahashi S, Takeda T, Narita F, Watanabe S (2008) Mixed-mode interlaminar fracture and damage characterization in woven fabric-reinforced glass/epoxy composite laminates at cryogenic temperatures using the finite element and improved test methods. Eng Fract Mech 75:5101–5112

    Article  Google Scholar 

  24. Shindo Y, Miura M, Takeda T, Saito N, Narita F (2011) Cryogenic delamination growth in woven glass/epoxy composite laminates under mixed-mode I/II fatigue loading. Compos Sci Technol 71:647–652

    Article  CAS  Google Scholar 

  25. Shindo Y, Horiguchi K, Wang R, Kudo H (2001) Double cantilever beam measurement and finite element analysis of cryogenic mode I interlaminar fracture toughness of glass-cloth/epoxy laminates. ASME J Eng Mater Technol 123:191–197

    Article  CAS  Google Scholar 

  26. ASTM D 5528-01 (2001) Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. In: Annual book of ASTM standards. ASTM International, West Conshohocken, PA

    Google Scholar 

  27. ISO 15024:2001(E) (2001) Fibre-reinforced plastic composites—determination of mode I interlaminar fracture toughness, GIC, for unidirectionally reinforced materials. The International Organization for Standardization

    Google Scholar 

  28. JIS K 7086 (1993) Testing methods for interlaminar fracture toughness of carbon fibre reinforced plastics. Japanese Standards Association

    Google Scholar 

  29. Nishijima S, Okada T, Honda Y (1994) Evaluation of epoxy resin by positron annihilation for cryogenic use. Adv Cryog Eng 40:1137–1144

    CAS  Google Scholar 

  30. Sumikawa M, Shindo Y, Takeda T, Narita F, Takano S, Sanada K (2005) Analysis of mode I interlaminar fracture and damage behavior of GFRP woven laminates at cryogenic temperatures. J Compos Mater 39:2053–2066

    Article  Google Scholar 

  31. Horiguchi K, Shindo Y, Kudo H, Kumagai S (2002) End-notched flexure testing and analysis of mode II interlaminar fracture behavior of glass-cloth/epoxy laminates at cryogenic temperatures. J Compos Technol Res 24:239–245

    Article  CAS  Google Scholar 

  32. Shindo Y, Narita F, Sato T (2006) Analysis of mode II interlaminar fracture and damage behavior in end notched flexure testing of GFRP woven laminates at cryogenic temperatures. Acta Mech 187:231–240

    Article  Google Scholar 

  33. Martin RH, Davidson BD (1999) Mode II fracture toughness evaluation using four point bend, end notched flexure test. Plast Rubber Compos 28:401–406

    CAS  Google Scholar 

  34. Davies P, Sims GD, Blackman BRK, Brunner AJ, Kageyama K, Hojo M, Tanaka K, Murri G, Rousseau C, Gieseke B, Martin RH (1999) Comparison of test configurations for determination of mode II interlaminar fracture toughness results from international collaborative test programme. Plast Rubber Compos 28:432–437

    CAS  Google Scholar 

  35. Sun X, Davidson BD (2006) Numerical evaluation of the effects of friction and geometric nonlinearities on the energy release rate in three- and four-point bend end-notched flexure tests. Eng Fract Mech 73:1343–1361

    Article  Google Scholar 

  36. Shindo Y, Sato T, Narita F, Sanada K (2008) Mode II interlaminar fracture and damage evaluation of GFRP woven laminates at cryogenic temperatures using the 4ENF specimen. J Compos Mater 42:1089–1101

    Article  Google Scholar 

  37. Farshad M, Flüeler P (1998) Investigation of mode III fracture toughness using an anti-clastic plate bending method. Eng Fract Mech 60:597–603

    Article  Google Scholar 

  38. Lee SM (1993) An edge crack torsion method for mode III delamination fracture testing. J Compos Technol Res 15:193–201

    Article  CAS  Google Scholar 

  39. Sharif F, Kortschot MT, Martin RH (1995) Mode III delamination using a split cantilever beam. In: Martin RH (ed) Composite materials: fatigue and fracture—fifth volume, ASTM STP 1230. American Society for Testing and Materials, Philadelphia, pp 85–99

    Google Scholar 

  40. Rizov V, Shindo Y, Horiguchi K, Narita F (2006) Mode III interlaminar fracture behavior of glass fiber reinforced polymer woven laminates at 293 to 4 K. Appl Compos Mater 13:287–304

    Article  CAS  Google Scholar 

  41. Shindo Y, Inamoto A, Narita F, Horiguchi K (2006) Mode I fatigue delamination growth in GFRP woven laminates at low temperatures. Eng Fract Mech 73:2080–2090

    Article  Google Scholar 

  42. Shindo Y, Takeda T, Narita F, Saito N, Watanabe S, Sanada K (2009) Delamination growth mechanisms in woven glass fiber reinforced polymer composites under mode II fatigue loading at cryogenic temperatures. Compos Sci Technol 69:1904–1911

    Article  CAS  Google Scholar 

  43. Asp LE, Sjögren A, Greenhalgh ES (2001) Delamination growth and thresholds in a carbon/epoxy composite under fatigue loading. J Compos Technol Res 23:55–68

    Article  CAS  Google Scholar 

  44. Gilchrist MD, Svensson N (1995) A fractographic analysis of delamination within multidirectional carbon/epoxy laminates. Compos Sci Technol 55:195–207

    Article  CAS  Google Scholar 

  45. Lee SM (1997) Mode II delamination failure mechanisms of polymer matrix composites. J Mater Sci 32:1287–1295

    Article  CAS  Google Scholar 

  46. Miura M, Shindo Y, Narita F, Watanabe S, Suzuki M (2009) Mode III fatigue delamination growth of glass fiber reinforced polymer woven laminates at cryogenic temperatures. Cryogenics 49:407–412

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhide Shindo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shindo, Y., Takeda, T., Narita, F. (2013). Interlaminar Delamination Fracture and Fatigue of Woven Glass Fiber Reinforced Polymer Composite Laminates at Cryogenic Temperatures. In: Kalia, S., Fu, SY. (eds) Polymers at Cryogenic Temperatures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35335-2_5

Download citation

Publish with us

Policies and ethics