Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 199))

Abstract

A non-fuzzy self-tuning scheme is proposed for Fuzzy PD controller in this paper. To eliminate the design complexity, output scaling factor (SF) of the proposed fuzzy controller is updated according to the process trend by a gain modification factor, which is determined by the normalized change of error of the system and its number of fuzzy partitions. The proposed non-fuzzy self-tuning fuzzy PD controller (NFST-FPDC) is demonstrated on a laboratory scale overhead crane. Moving a suspended load along a pre-specified path is not an easy task when strict specifications on the swing angle and transfer time need to be satisfied. In this study, twin NFST-FPDC are designed to control the trolley position of the crane and swing angle of the load. The proposed non-fuzzy gain tuning scheme guarantees a fast and precise load transfer and the swing suppression during load movement, despite of model uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hong, K.S., Ngo, Q.H.: Port Automation: modeling and control of container cranes. In: Inter. Conf. on Instrumentation, Control and Automation, pp. 19–26 (October 2009)

    Google Scholar 

  2. Hamalainen, J.J., Marttinen, A., Baharova, L., et al.: Optimal path planning for a trolley crane: fast and smooth transfer of load. In: IEE Proc. Control Theory and Applications, vol. 142(1), pp. 51–57 (1995)

    Google Scholar 

  3. Li, C., Lee, C.Y.: Fuzzy motion control of an auto-warehousing crane system. IEEE Trans. on Ind. Electron. 48(5), 983–994 (2001)

    Article  Google Scholar 

  4. Park, M.S., Chwa, D., Hong, S.K.: Antisway tracking control of overhead cranes with system uncertainity and actuator nonlinearity using an adaptive fuzzy sliding mode control. IEEE Trans. on Industrial Electronics 55(11), 3972–3984 (2008)

    Article  Google Scholar 

  5. Sorensen, K.L., Singhose, W., Dickerson, S.: A controller enabling precise positioning and sway reduction in bridge and grany cranes. Control Engineering Practice 15, 825–837 (2007)

    Article  Google Scholar 

  6. Lee, C.C.: Fuzzy logic in control systems: Fuzzy logic controller—Parts I, II. IEEE Trans. on Syst., Man, Cybern. 20, 404–435 (1990)

    Article  MATH  Google Scholar 

  7. Shinskey, F.G.: Process Control Systems—Application, Design, and Tuning. McGraw-Hill, New York (1998)

    Google Scholar 

  8. Malki, H.A., Li, H., Chen, G.: New design and stability analysis of fuzzy proportional-derivative control systems. IEEE Trans. on Fuzzy Systems 2, 245–254 (1994)

    Article  Google Scholar 

  9. Mudi, R.K., Pal, N.R.: A Self-Tuning Fuzzy PD Controller. IETE Journal of Research (Special Issue on Fuzzy Systems) 44(4&5), 177–189 (1998)

    Google Scholar 

  10. Mudi, R.K., Pal, N.R.: A robust self-tuning scheme for PI and PD type fuzzy control- lers. IEEE Trans. on Fuzzy Systems 7(1), 2–16 (1999)

    Article  Google Scholar 

  11. Mudi, R.K., Pal, N.R.: A self-tuning fuzzy PI controllers. Fuzzy Sets and Systems 115, 327–338 (2000)

    Article  MATH  Google Scholar 

  12. Pal, N.R., Mudi, R.K., Pal, K., Patranabis, D.: Rule Extraction through Exploratory Data Analysis for Self-Tuning Fuzzy Controller. Int. J. of Fuzzy Systems 6(2), 71–80 (2004)

    MathSciNet  Google Scholar 

  13. Pal, A.K., Mudi, R.K.: Self-Tuning Fuzzy PI controller and its application to HVAC system. IJCC (US) 6(1), 25–30 (2008)

    Google Scholar 

  14. Pal, A.K., Mudi, R.K.: Development of a Self-Tuning Fuzzy Controller through Relay Feedback Approach. In: Das, V.V. (ed.) CIIT 2011. CCIS, vol. 250, pp. 424–426. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Chang, C., Hsu, S., Chiang, K.: A practical fuzzy controllers scheme of overhead crane. Journal of Control Theory and Applications 3, 266–270 (2005)

    Article  MATH  Google Scholar 

  16. Liu, D., Yi, J., Zhao, D., Wang, W.: Adaptive sliding mode fuzzy control for a two dimensional overhead crane. Mechatronics 15, 505–522 (2005)

    Article  Google Scholar 

  17. Yang, J.H., Yang, K.S.: Adaptive coupling control for overhead crane systems. Mechatronics 17(2/3), 143–152 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pal, A.K., Mudi, R.K., De Maity, R.R. (2013). A Non-Fuzzy Self-Tuning Scheme of PD-Type FLC for Overhead Crane Control. In: Satapathy, S., Udgata, S., Biswal, B. (eds) Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA). Advances in Intelligent Systems and Computing, vol 199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35314-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35314-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35313-0

  • Online ISBN: 978-3-642-35314-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics