Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 199))

Abstract

This paper is intended to give review of various heuristics and metaheuristics methods to graph coloring problem. The graph coloring problem is one of the combinatorial optimization problems used widely. It is a fundamental and significant problem in scientific computation and engineering design. The graph coloring problem is an NP-hard problem and can be explained as given an undirected graph, one has to find the least number of colors for coloring the vertices of the graph such that the two adjacent vertices must have different color. The minimum number of colors needed to color a graph is called its chromatic number. In this paper, a brief survey of various methods is given to solve graph coloring problem. Basically we have categorized it into three parts namely heuristic method, metaheuristic methods and hybrid methods. This paper surveys and analyzes various methods with an emphasis on recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Comput. 39(4), 345–351 (1987)

    Article  MATH  Google Scholar 

  2. Lim, A., Wang, F.: Meta-heuristics for robust graph coloring problem. In: Proceedings of 16th IEEE International Conference on Tools with Artificial Intelligence, Florida, pp. 514–518 (2004)

    Google Scholar 

  3. Ray, B., Pal, A.J., Bhattacharyya, D., Kim, T.H.: An Efficient GA with Multipoint Guided Mutation for Graph Coloring Problems. Int. J. Signal Process. Image Process. and Pattern Recognit. 3(2), 51–58 (2010)

    Google Scholar 

  4. Brelaz, D.: New methods to color the vertices of a graph. Commun. ACM. 22, 251–256 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for Graph coloring. Eur. J. Oper. Res. 151(2), 379–388 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63(3), 437–461 (1996)

    Article  MATH  Google Scholar 

  7. Chiarandini, M., Stutzle, T.: An application of iterated local search to graph coloring. In: Johnson, D.S., Mehrotra, A., Trick, M. (eds.) Proc. of the Computational Symposium on Graph Coloring and its Generalizations, Ithaca, New York, USA, pp. 112–125 (2002)

    Google Scholar 

  8. Cui, G., Qin, L., Liu, S., Wang, Y., Zhang, X., Cao, X.: Modified PSO algorithm for solving planar graph coloring problem. Progress Nat. Sci. 18, 353–357 (2008)

    Article  Google Scholar 

  9. Costa, D., Hertz, A.: Ants Can Color Graphs. J. Oper. Res. Soc. 48, 295–305 (1997)

    MATH  Google Scholar 

  10. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing:an experimental evaluation; part II, graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)

    Article  MATH  Google Scholar 

  11. Porumbel, D.C., Hao, J.-K., Kuntz, P.: Position-Guided Tabu Search Algorithm for the Graph Coloring Problem. In: Stützle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 148–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Costa, D., Hertz, A., Dubuis, C.: Embedding a sequential procedure within an evolutionary algorithm for coloring problems in graphs. J. Heuristics 1, 105–128 (1995)

    Article  MATH  Google Scholar 

  13. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical Report 91-016, Politecnico di Milano, Italy (1991)

    Google Scholar 

  14. Dorne, R., Hao, J.K.: Tabu Search for graph coloring, T-coloring and Set T-colorings. In: Osman, I.H., et al. (eds.) Metaheuristics 1998: Theory and Applications. ch. 3. Kluver Academic Publishers (1998)

    Google Scholar 

  15. Salari, E., Eshghi, K.: An ACO Algorithm for the Graph Coloring Problem. Int. J. Contemp. Math. Sci. 3, 293–304 (2008)

    MATH  MathSciNet  Google Scholar 

  16. Erfani, M.: A modified PSO with fuzzy inference system for solving the planar graph coloring problem. Masters thesis, Universiti Teknologi Malaysia, Faculty of Computer Science and Information System (2010)

    Google Scholar 

  17. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Natl. Bur. Stand. 84(6), 489–505 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  19. Garey, R., Johnson, D.S.: A guide to the theory of NP–completeness. Computers and intractability. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  20. Gendron, B., Hertz, A., St-Louis, P.: On edge orienting methods for graph coloring. J. of Comb. Optim. 13(2), 163–178 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discret. Appl. Math. 156(13), 2551–2560 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hsu, L., Horng, S., Fan, P.: Mtpso algorithm for solving planar graph coloring problem. Expert Syst. Appl. 38, 5525–5531 (2011)

    Article  Google Scholar 

  23. Ayanegui, H., Chavez-Aragon, A.: A complete algorithm to solve the graph-coloring problem. In: Fifth Latin American Workshop on Non-Monotonic Reasoning, LANMR, pp. 107–117 (2009)

    Google Scholar 

  24. Blochliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput. Oper. Res. 35(3), 960–975 (2008)

    Article  MathSciNet  Google Scholar 

  25. Holland, J.H.: Adaption in natural and artificial systems. The University of Michigan Press, Ann Harbor (1975)

    MATH  Google Scholar 

  26. Qin, J., Yin, Y.-X., Ban, X.-J.: Hybrid discrete particle swarm optimization for graph coloring problem. J. Comput. 6, 1175–1182 (2011)

    Google Scholar 

  27. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. Neural Netw., Piscataway, NJ, USA, pp. 1942–1948 (1995)

    Google Scholar 

  28. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comp. Syst. Sci. 9, 256–278 (1974)

    Article  MATH  Google Scholar 

  29. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci. 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Davis, L.: Order-based genetic algorithms and the graph coloring problem. In: Handbook of Genetic Algorithms, pp. 72–90 (1991)

    Google Scholar 

  31. Chams, M., Hertz, A., Werra, D.: Some experiments with simulated annealing for coloring graphs. Eur. J. of Oper. Res. 32(2), 260–266 (1987)

    Article  MATH  Google Scholar 

  32. Plumettaz, M., Schindl, D., Zufferey, N.: Ant Local Search and its effcient adaptation to graph colouring. Journal of Operational Research Society 61(5), 819–826 (2010)

    Article  MATH  Google Scholar 

  33. Matula, D.W., Marble, G., Isaacson, D.: Graph coloring algorithms. In: Graph Theory and Computing, pp. 109–122. Academic Press, New York (1972)

    Google Scholar 

  34. Mladenovic, N., Hansen, P.: Variable Neighborhood Search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb Optim. 3(4), 379–397 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  36. Chalupa, D.: Population-based and learning-based metaheuristic algorithms for the graph coloring problem. In: Krasnogor, N., Lanzi, P.L. (eds.) GECCO, pp. 465–472. ACM (2011)

    Google Scholar 

  37. Sivanandam, S.N., Sumathi, S., Hamsapriya, T.: A hybrid parallel genetic algorithm approach for graph coloring. Int. J. Knowl. Based Intel. Eng. Syst. 9, 249–259 (2005)

    Google Scholar 

  38. Lukasik, S., Kokosinski, Z., Swieton, G.: Parallel Simulated Annealing Algorithm for Graph Coloring Problem. Parallel Process. Appl. Math., 229–238 (2007)

    Google Scholar 

  39. Titiloye, O., Crispin, A.: Quantum annealing of the graph coloring problem. Discret. Optim. 8(2), 376–384 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Trick, M.A., Yildiz, H.: A Large Neighborhood Search Heuristic for Graph Coloring. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 346–360. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  41. Welsh, D.J., Powell, M.B.: An upper bound for the chromatic number of a graph and its application to timetabling problem. Comp. J. 10, 85–86 (1967)

    Article  MATH  Google Scholar 

  42. Lu, Z., Hao, J.-K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203(1), 241–250 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malti Baghel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baghel, M., Agrawal, S., Silakari, S. (2013). Recent Trends and Developments in Graph Coloring. In: Satapathy, S., Udgata, S., Biswal, B. (eds) Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA). Advances in Intelligent Systems and Computing, vol 199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35314-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35314-7_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35313-0

  • Online ISBN: 978-3-642-35314-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics