Skip to main content

Coherent and Strongly Discrete Rings in Type Theory

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7679))

Abstract

We present a formalization of coherent and strongly discrete rings in type theory. This is a fundamental structure in constructive algebra that represents rings in which it is possible to solve linear systems of equations. These structures have been instantiated with Bézout domains (for instance ℤ and k[x]) and Prüfer domains (generalization of Dedekind domains) so that we get certified algorithms solving systems of equations that are applicable on these general structures. This work can be seen as basis for developing a formalized library of linear algebra over rings.

The research leading to these results has received funding from the European Union’s 7th Framework Programme under grant agreement nr. 243847 (ForMath).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avigad, J.: Methodology and metaphysics in the development of Dedekind’s theory of ideals. In: The Architecture of Modern Mathematics. Essays in History and Philosophy. Oxford University Press, Oxford (2006)

    Google Scholar 

  2. Barakat, M., Lange-Hegermann, M.: An axiomatic setup for algorithmic homological algebra and an alternative approach to localization. J. Algebra Appl. 10(2), 269–293 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barakat, M., Robertz, D.: homalg – A Meta-Package for Homological Algebra. J. Algebra Appl. 7(3), 299–317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourbaki, N.: Commutative algebra. Elements of Mathematics, ch. 1-7. Springer (1998)

    Google Scholar 

  5. COQ development team. The COQ Proof Assistant Reference Manual, version 8.3. Technical report (2010)

    Google Scholar 

  6. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms: An introduction to Computational Algebraic Geometry and Commutative Algebra. Springer (2006)

    Google Scholar 

  7. Dénès, M., Mörtberg, A., Siles, V.: A Refinement-Based Approach to Computational Algebra in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 83–98. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Ducos, L., Lombardi, H., Quitté, C., Salou, M.: Théorie algorithmique des anneaux arithmétiques, des anneaux de Prüfer et des anneaux de Dedekind. Journal of Algebra 281(2), 604–650 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging Mathematical Structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Gonthier, G.: Point-Free, Set-Free Concrete Linear Algebra. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 103–118. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Gonthier, G., Mahboubi, A.: A Small Scale Reflection Extension for the Coq system. Technical report, Microsoft Research INRIA (2009)

    Google Scholar 

  12. Lombardi, H., Perdry, H.: The Buchberger Algorithm as a Tool for Ideal Theory of Polynomial Rings in Constructive Mathematics (1998)

    Google Scholar 

  13. Lombardi, H., Quitté, C.: Algébre commutative, Méthodes constructives: Modules projectifs de type fini. Calvage et Mounet (2011)

    Google Scholar 

  14. Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra. Springer (1988)

    Google Scholar 

  15. Mörtberg, A.: Constructive Algebra in Functional Programming and Type Theory. Master’s thesis, Chalmers University of Technology (2010)

    Google Scholar 

  16. Perdry, H., Schuster, P.: Noetherian orders. Mathematical. Structures in Comp. Sci. 21(1), 111–124

    Google Scholar 

  17. Persson, H.: An Integrated Development of Buchberger’s Algorithm in Coq (2001)

    Google Scholar 

  18. Quadrat, A.: The fractional representation approach to synthesis problems: An algebraic analysis viewpoint part ii: Internal stabilization. SIAM J. Control Optim. 42(1), 300–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Théry, L.: A Certified Version of Buchberger’s Algorithm. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 349–364. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coquand, T., Mörtberg, A., Siles, V. (2012). Coherent and Strongly Discrete Rings in Type Theory. In: Hawblitzel, C., Miller, D. (eds) Certified Programs and Proofs. CPP 2012. Lecture Notes in Computer Science, vol 7679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35308-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35308-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35307-9

  • Online ISBN: 978-3-642-35308-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics