Auxin Transport and Signaling in Leaf Vascular Patterning

  • Enrico ScarpellaEmail author
  • Thomas BerlethEmail author
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 17)


Reticulate tissue systems pervade most multicellular organisms, and the principles controlling the formation of these cellular networks have long been object of interest of biologists and mathematicians. In particular, the beautiful and varied networks of veins in plant leaves have intrigued mankind since antiquity. Vascular cells are aligned with one another within continuous veins that reproducibly supply all areas of the leaf, but the precise path of vein formation is highly variable. Recent advances suggest a self-organizing control mechanism in which an apical-basal continuous flow of signal could establish a basic coordinate system for body-axis and vascular-strand formation, and account for both the reproducible and the variable features of leaf vein patterns.


Auxin Transport Shoot Meristem Embryo Axis Vascular Strand Vein Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank The Company of Biologists and Elsevier for kindly granting permission to use published material as template for figures. We apologize to colleagues whose results could not be included in the available space. The authors’ vascular research is supported by Discovery Grants of the Natural Sciences and Engineering Research Council of Canada.


  1. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120PubMedCrossRefGoogle Scholar
  2. Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol Plant Mol Biol 38:179–204CrossRefGoogle Scholar
  3. Aloni R (2001) Foliar and axial aspects of vascular differentiation: hypotheses and evidence. J Plant Growth Regul 20:22–34CrossRefGoogle Scholar
  4. Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182PubMedGoogle Scholar
  5. Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–1141PubMedCrossRefGoogle Scholar
  6. Baucher M, El Jaziri M, Vandeputte O (2007) From primary to secondary growth: origin and development of the vascular system. J Exp Bot 58:3485–3501PubMedCrossRefGoogle Scholar
  7. Bayer EM, Smith RS, Mandel T, Nakayama N, Sauer M, Prusinkiewicz P, Kuhlemeier C (2009) Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 23:373–384PubMedCrossRefGoogle Scholar
  8. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602PubMedCrossRefGoogle Scholar
  9. Berleth T, Jurgens G (1993) The role of the monopteros gene in organizing the basal body region of the Arabidopsis embryo. Development 118:575–587Google Scholar
  10. Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393PubMedCrossRefGoogle Scholar
  11. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44PubMedCrossRefGoogle Scholar
  12. Bollhoner B, Prestele J, Tuominen H (2012) Xylem cell death: emerging understanding of regulation and function. J Exp Bot 63:1081–1094PubMedCrossRefGoogle Scholar
  13. Boutte Y, Grebe M (2009) Cellular processes relying on sterol function in plants. Curr Opin Plant Biol 12:705–713PubMedCrossRefGoogle Scholar
  14. Candela H, Martinez-Laborda A, Micol JL (1999) Venation pattern formation in Arabidopsis thaliana vegetative leaves. Dev Biol 205:205–216PubMedCrossRefGoogle Scholar
  15. Cano-Delgado A, Lee JY, Demura T (2010) Regulatory mechanisms for specification and patterning of plant vascular tissues. Annu Rev Cell Dev Biol 26:605–637PubMedCrossRefGoogle Scholar
  16. Capron A, Chatfield S, Provart N, Berleth T (2009) Embryogenesis: pattern formation from a single cell. The Arabidopsis book. American Society of Plant Biologists, Rockville, MDGoogle Scholar
  17. Carland F, Nelson T (2009) CVP2- and CVL1-mediated phosphoinositide signaling as a regulator of the ARF GAP SFC/VAN3 in establishment of foliar vein patterns. Plant J 59:895–907PubMedCrossRefGoogle Scholar
  18. Carland FM, Berg BL, FitzGerald JN, Jinamornphongs S, Nelson T, Keith B (1999) Genetic regulation of vascular tissue patterning in Arabidopsis. Plant Cell 11:2123–2137PubMedGoogle Scholar
  19. Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14:2045–2058PubMedCrossRefGoogle Scholar
  20. Carland F, Fujioka S, Nelson T (2010) The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products. Plant Physiol 153:741–756PubMedCrossRefGoogle Scholar
  21. Carlsbecker A, Helariutta Y (2005) Phloem and xylem specification: pieces of the puzzle emerge. Curr Opin Plant Biol 8:512–517PubMedCrossRefGoogle Scholar
  22. Chavrier P, Goud B (1999) The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol 11:466–475PubMedCrossRefGoogle Scholar
  23. De Smet I, Lau S, Mayer U, Jurgens G (2010) Embryogenesis - the humble beginnings of plant life. Plant J 61:959–970PubMedCrossRefGoogle Scholar
  24. Dejardin A, Laurans F, Arnaud D, Breton C, Pilate G, Leple JC (2010) Wood formation in Angiosperms. Compt Rend Biol 333:325–334CrossRefGoogle Scholar
  25. Dengler NG (2001) Regulation of vascular development. J Plant Growth Regul 20:1–13CrossRefGoogle Scholar
  26. Dengler NG (2006) The shoot apical meristem and development of vascular architecture. Can J Bot 84:1660–1671CrossRefGoogle Scholar
  27. Dengler N, Kang J (2001) Vascular patterning and leaf shape. Curr Opin Plant Biol 4:50–56PubMedCrossRefGoogle Scholar
  28. Dettmer J, Elo A, Helariutta Y (2009) Hormone interactions during vascular development. Plant Mol Biol 69:347–360PubMedCrossRefGoogle Scholar
  29. Deyholos MK, Cordner G, Beebe D, Sieburth LE (2000) The SCARFACE gene is required for cotyledon and leaf vein patterning. Development 127:3205–3213PubMedGoogle Scholar
  30. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119PubMedCrossRefGoogle Scholar
  31. Du J, Groover A (2010) Transcriptional regulation of secondary growth and wood formation. J Integr Plant Biol 52:17–27PubMedCrossRefGoogle Scholar
  32. Elo A, Immanen J, Nieminen K, Helariutta Y (2009) Stem cell function during plant vascular development. Semin Cell Dev Biol 20:1097–1106PubMedCrossRefGoogle Scholar
  33. Esau K (1943) Origin and development of primary vascular tissues in plants. Bot Rev 9:125–206CrossRefGoogle Scholar
  34. Flaishman MA, Loginovsky K, Lev-Yadun S (2003) Regenerative xylem in inflorescence stems of Arabidopsis thaliana. J Plant Growth Regul 22:253–258CrossRefGoogle Scholar
  35. Foster AS (1952) Foliar venation in angiosperms from an ontogenetic standpoint. Am J Bot 39:752–766CrossRefGoogle Scholar
  36. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153PubMedCrossRefGoogle Scholar
  37. Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391PubMedCrossRefGoogle Scholar
  38. Fukuda H, Hirakawa Y, Sawa S (2007) Peptide signaling in vascular development. Curr Opin Plant Biol 10:477–482PubMedCrossRefGoogle Scholar
  39. Garnett P, Steinacher A, Stepney S, Clayton R, Leyser O (2010) Computer simulation: the imaginary friend of auxin transport biology. Bioessays 32:828–835PubMedCrossRefGoogle Scholar
  40. Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428PubMedCrossRefGoogle Scholar
  41. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230PubMedCrossRefGoogle Scholar
  42. Grieneisen VA, Xu J, Maree AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013PubMedCrossRefGoogle Scholar
  43. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460PubMedCrossRefGoogle Scholar
  44. Hadfi K, Speth V, Neuhaus G (1998) Auxin-induced developmental patterns in Brassica juncea embryos. Development 125:879–887PubMedGoogle Scholar
  45. Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395PubMedGoogle Scholar
  46. Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615PubMedCrossRefGoogle Scholar
  47. Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411PubMedCrossRefGoogle Scholar
  48. Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100PubMedCrossRefGoogle Scholar
  49. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911PubMedCrossRefGoogle Scholar
  50. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567PubMedCrossRefGoogle Scholar
  51. Hirakawa Y, Kondo Y, Fukuda H (2010) Regulation of vascular development by CLE peptide-receptor systems. J Integr Plant Biol 52:8–16PubMedCrossRefGoogle Scholar
  52. Hirakawa Y, Kondo Y, Fukuda H (2011) Establishment and maintenance of vascular cell communities through local signaling. Curr Opin Plant Biol 14:17–23PubMedCrossRefGoogle Scholar
  53. Hou H, Erickson J, Meservy J, Schultz EA (2010) FORKED1 encodes a PH domain protein that is required for PIN1 localization in developing leaf veins. Plant J 63:960–973PubMedCrossRefGoogle Scholar
  54. Jacobs WP (1952) The role of auxin in differentiation of xylem around a wound. Am J Bot 39:301–309CrossRefGoogle Scholar
  55. Jeong SH, Bayer M, Lukowitz W (2011) Taking the very first steps: from polarity to axial domains in the early Arabidopsis embryo. J Exp Bot 62:1687–1697PubMedCrossRefGoogle Scholar
  56. Jeong S, Volny M, Lukowitz W (2012) Axis formation in Arabidopsis: transcription factors tell their side of the story. Curr Opin Plant Biol 15:4–9PubMedCrossRefGoogle Scholar
  57. Jonsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103:1633–1638PubMedCrossRefGoogle Scholar
  58. Jost L (1942) Über Gefässbrücken. Zeitsch Bot 38:161–215Google Scholar
  59. Jung JH, Park CM (2007) Vascular development in plants: specification of xylem and phloem tissues. J Plant Biol 50:301–305CrossRefGoogle Scholar
  60. Kang J, Dengler N (2004) Vein pattern development in adult leaves of Arabidopsis thaliana. Int J Plant Sci 165:231–242CrossRefGoogle Scholar
  61. Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer PB, Wisniewska J, Paciorek T, Benkova E, Friml J (2008) ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Curr Biol 18:526–531PubMedCrossRefGoogle Scholar
  62. Klucking EP (1995) Leaf venation patterns. J. Cramer, BerlinGoogle Scholar
  63. Koizumi K, Sugiyama M, Fukuda H (2000) A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question. Development 127:3197–3204PubMedGoogle Scholar
  64. Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T, Nakano A, Sugiyama M, Fukuda H (2005) VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development 132:1699–1711PubMedCrossRefGoogle Scholar
  65. Krupinski P, Jonsson H (2010) Modeling auxin-regulated development. Cold Spring Harb Perspect Biol 2:a001560PubMedCrossRefGoogle Scholar
  66. Lau S, Ehrismann JS, Schlereth A, Takada S, Mayer U, Jurgens G (2010) Cell-cell communication in Arabidopsis early embryogenesis. Eur J Cell Biol 89:225–230PubMedCrossRefGoogle Scholar
  67. Lehesranta SJ, Lichtenberger R, Helariutta Y (2010) Cell-to-cell communication in vascular morphogenesis. Curr Opin Plant Biol 13:59–65PubMedCrossRefGoogle Scholar
  68. Lemmon MA, Ferguson KM (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 350:1–18PubMedCrossRefGoogle Scholar
  69. Leyser O (2011) Auxin, self-organisation, and the colonial nature of plants. Curr Biol 21:R331–R337PubMedCrossRefGoogle Scholar
  70. Lin WH, Wang Y, Mueller-Roeber B, Brearley CA, Xu ZH, Xue HW (2005) At5PTase13 modulates cotyledon vein development through regulating auxin homeostasis. Plant Physiol 139:1677–1691PubMedCrossRefGoogle Scholar
  71. Lingwood D, Kaiser HJ, Levental I, Simons K (2009) Lipid rafts as functional heterogeneity in cell membranes. Biochem Soc Trans 37:955–960PubMedCrossRefGoogle Scholar
  72. Liu C, Xu Z, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630PubMedGoogle Scholar
  73. Lu P, Werb Z (2008) Patterning mechanisms of branched organs. Science 322:1506–1509PubMedCrossRefGoogle Scholar
  74. Mansfield SG, Briarty LG (1991) Early embryogenesis in Arabidopsis thaliana. 2. The developing embryo. Can J Bot 69:461–476CrossRefGoogle Scholar
  75. Mansfield SG, Briarty LG, Erni S (1991) Early embryogenesis in Arabidopsis thaliana. 1. The mature embryo sac. Can J Bot 69:447–460CrossRefGoogle Scholar
  76. Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991PubMedGoogle Scholar
  77. Mayer U, Buttner G, Jurgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the Gnom gene. Development 117:149–162Google Scholar
  78. Meinhardt H (1982) Models of biological pattern formation. Academic, LondonGoogle Scholar
  79. Meinhardt H, Gierer A Theoretical aspects of pattern formation and neuronal development. Scholar
  80. Men SZ, Boutte Y, Ikeda Y, Li XG, Palme K, Stierhof YD, Hartmann MA, Moritz T, Grebe M (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10:237–U124PubMedCrossRefGoogle Scholar
  81. Michniewicz M, Brewer PB, Friml J (2007) Polar auxin transport and asymmetric auxin distribution. Arabidopsis Book 5:e0108PubMedGoogle Scholar
  82. Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80PubMedCrossRefGoogle Scholar
  83. Moller B, Weijers D (2009) Auxin control of embryo patterning. Cold Spring Harb Perspect Biol 1:a001545PubMedCrossRefGoogle Scholar
  84. Moreno-Risueno MA, Van Norman JM, Benfey PN (2012) Transcriptional switches direct plant organ formation and patterning. Development 98:229–257Google Scholar
  85. Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311PubMedCrossRefGoogle Scholar
  86. Naramoto S, Sawa S, Koizumi K, Uemura T, Ueda T, Friml J, Nakano A, Fukuda H (2009) Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development 136:1529–1538PubMedCrossRefGoogle Scholar
  87. Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T, Paciorek T, Ueda T, Nakano A, Van Montagu MCE, Fukuda H, Friml J (2010) ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci USA 107:21890–21895PubMedCrossRefGoogle Scholar
  88. Nelson T (2011) The grass leaf developmental gradient as a platform for a systems understanding of the anatomical specialization of C(4) leaves. J Exp Bot 62:3039–3048PubMedCrossRefGoogle Scholar
  89. Nelson T, Dengler N (1997) Leaf vascular pattern formation. Plant Cell 9:1121–1135PubMedCrossRefGoogle Scholar
  90. Nodine MD, Bryan AC, Racolta A, Jerosky KV, Tax FE (2011) A few standing for many: embryo receptor-like kinases. Trends Plant Sci 16:211–217PubMedCrossRefGoogle Scholar
  91. Normanly J (2012) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2:a001594. doi: 001510.001101/cshperspect.a001594 CrossRefGoogle Scholar
  92. Oda Y, Fukuda H (2012) Secondary cell wall patterning during xylem differentiation. Curr Opin Plant Biol 15:38–44PubMedCrossRefGoogle Scholar
  93. Ohashi-Ito K, Fukuda H (2010) Transcriptional regulation of vascular cell fates. Curr Opin Plant Biol 13:670–676PubMedCrossRefGoogle Scholar
  94. Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jurgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256PubMedCrossRefGoogle Scholar
  95. Pan JW, Fujioka S, Peng JL, Chen JH, Li GM, Chen RJ (2009) The E3 ubiquitin ligase SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of endocytosis, recycling, and plasma membrane accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana. Plant Cell 21:568–580PubMedCrossRefGoogle Scholar
  96. Peris CIL, Rademacher EH, Weijers D (2010) Green beginnings - pattern formation in the early plant embryo. Curr Top Dev Biol 91:1–27PubMedCrossRefGoogle Scholar
  97. Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688PubMedCrossRefGoogle Scholar
  98. Ploense SE, Wu MF, Nagpal P, Reed JW (2009) A gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning. Development 136:1509–1517PubMedCrossRefGoogle Scholar
  99. Pray TR (1955) Foliar venation in Angiosperms. II. Histogenesis of the venation of Liriodendron. Am J Bot 42:18–27CrossRefGoogle Scholar
  100. Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200:229–237PubMedCrossRefGoogle Scholar
  101. Rademacher EH, Moller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D (2011) A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J 68:597–606PubMedCrossRefGoogle Scholar
  102. Raven JA (1975) Transport of indole acetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74:163–172CrossRefGoogle Scholar
  103. Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518PubMedGoogle Scholar
  104. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260PubMedCrossRefGoogle Scholar
  105. Risopatron JPM, Sun YQ, Jones BJ (2010) The vascular cambium: molecular control of cellular structure. Protoplasma 247:145–161CrossRefGoogle Scholar
  106. Roberts LW (1960) Experiments on xylem regeneration in stem wound responses in Coleus. Bot Gaz 121:201–208CrossRefGoogle Scholar
  107. Roberts LW, Fosket DE (1962) Further experiments on wound-vessel formation in stem wounds of Coleus. Bot Gaz 123:247–254CrossRefGoogle Scholar
  108. Rolland-Lagan AG (2008) Vein patterning in growing leaves: axes and polarities. Curr Opin Genet Dev 18:348–353PubMedCrossRefGoogle Scholar
  109. Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 118:101–121CrossRefGoogle Scholar
  110. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472PubMedCrossRefGoogle Scholar
  111. Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–262CrossRefGoogle Scholar
  112. Sachs T (1988) Ontogeny and phylogeny: phytohormones as indicators of labile changes. In: Gottlieb LD, Jain SK (eds) Plant evolutionary biology. Chapman and Hall, London, pp 157–176CrossRefGoogle Scholar
  113. Sachs T (1989) The development of vascular networks during leaf development. Curr Top Plant Biochem Physiol 8:168–183Google Scholar
  114. Sachs T (1991) Cell polarity and tissue patterning in plants. Development Suppl 1:83–93Google Scholar
  115. Sakaguchi J, Itoh JI, Ito Y, Nakamura A, Fukuda H, Sawa S (2010) COE1, an LRR-RLK responsible for commissural vein pattern formation in rice. Plant J 63:405–416CrossRefGoogle Scholar
  116. Samuels AL, Kaneda M, Rensing KH (2006) The cell biology of wood formation: from cambial divisions to mature secondary xylem. Can J Bot 84:631–639CrossRefGoogle Scholar
  117. Santos F, Teale W, Fleck C, Volpers M, Ruperti B, Palme K (2010) Modelling polar auxin transport in developmental patterning. Plant Biol 12(Suppl 1):3–14PubMedCrossRefGoogle Scholar
  118. Sato A, Yamamoto KT (2008) Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiol Plant 133:397–405PubMedCrossRefGoogle Scholar
  119. Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benkova E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911PubMedCrossRefGoogle Scholar
  120. Sawchuk MG, Head P, Donner TJ, Scarpella E (2007) Time-lapse imaging of Arabidopsis leaf development shows dynamic patterns of procambium formation. New Phytol 176:560–571PubMedCrossRefGoogle Scholar
  121. Scarpella E, Meijer AH (2004) Pattern formation in the vascular system of monocot and dicot plant species. New Phytol 164:209–242CrossRefGoogle Scholar
  122. Scarpella E, Boot KJ, Rueb S, Meijer AH (2002) The procambium specification gene Oshox1 promotes polar auxin transport capacity and reduces its sensitivity toward inhibition. Plant Physiol 130:1349–1360PubMedCrossRefGoogle Scholar
  123. Scarpella E, Francis P, Berleth T (2004) Stage-specific markers define early steps of procambium development in Arabidopsis leaves and correlate termination of vein formation with mesophyll differentiation. Development 131:3445–3455PubMedCrossRefGoogle Scholar
  124. Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027PubMedCrossRefGoogle Scholar
  125. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487Google Scholar
  126. Scheres B, Dilaurenzio L, Willemsen V, Hauser MT, Janmaat K, Weisbeek P, Benfey PN (1995) Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62Google Scholar
  127. Schwartz BW, Yeung EC, Meinke DW (1994) Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis. Development 120:3235–3245Google Scholar
  128. Shevell DE, Leu WM, Gillmor CS, Xia G, Feldmann KA, Chua NH (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77:1051–1062PubMedCrossRefGoogle Scholar
  129. Sieburth LE (1999) Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol 121:1179–1190PubMedCrossRefGoogle Scholar
  130. Sieburth LE, Deyholos MK (2006) Vascular development: the long and winding road. Curr Opin Plant Biol 9:48–54PubMedCrossRefGoogle Scholar
  131. Sieburth LE, Muday GK, King EJ, Benton G, Kim S, Metcalf KE, Meyers L, Seamen E, Van Norman JM (2006) SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis. Plant Cell 18:1396–1411PubMedCrossRefGoogle Scholar
  132. Smith RS, Bayer EM (2009) Auxin transport-feedback models of patterning in plants. Plant Cell Environ 32:1258–1271PubMedCrossRefGoogle Scholar
  133. Smith RS, Guyomarc'h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–1306PubMedCrossRefGoogle Scholar
  134. Spicer R, Groover A (2010) Evolution of development of vascular cambia and secondary growth. New Phytol 186:577–592PubMedCrossRefGoogle Scholar
  135. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K, Jurgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318PubMedCrossRefGoogle Scholar
  136. Steynen QJ, Schultz EA (2003) The FORKED genes are essential for distal vein meeting in Arabidopsis. Development 130:4695–4708PubMedCrossRefGoogle Scholar
  137. Takada S, Jurgens G (2007) Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo. Development 134:1141–1150PubMedCrossRefGoogle Scholar
  138. Tsiantis M, Brown MI, Skibinski G, Langdale JA (1999) Disruption of auxin transport is associated with aberrant leaf development in maize. Plant Physiol 121:1163–1168PubMedCrossRefGoogle Scholar
  139. Turner S, Sieburth LE (2002) Vascular patterning. In: Meyerowitz EM, Somerville CR (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MDGoogle Scholar
  140. Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433PubMedCrossRefGoogle Scholar
  141. van Bel AJ, Ehlers K, Knoblauch M (2002) Sieve elements caught in the act. Trends Plant Sci 7:126–132PubMedCrossRefGoogle Scholar
  142. van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–289PubMedCrossRefGoogle Scholar
  143. Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blazquez MA, Carbonell J (2010) Role of polyamines in plant vascular development. Plant Physiol Biochem 48:534–539PubMedCrossRefGoogle Scholar
  144. Vernon DM, Meinke DW (1994) Embryogenic transformation of the suspensor in twin, a polyembryonic mutant of Arabidopsis. Dev Biol 165:566–573PubMedCrossRefGoogle Scholar
  145. Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521–4531PubMedCrossRefGoogle Scholar
  146. Wabnik K, Govaerts W, Friml J, Kleine-Vehn J (2011) Feedback models for polarized auxin transport: an emerging trend. Mol Biosyst 7:2352–2359PubMedCrossRefGoogle Scholar
  147. Weijers D, Sauer M, Meurette O, Friml J, Ljung K, Sandberg G, Hooykaas P, Offringa R (2005) Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED-dependent auxin transport in Arabidopsis. Plant Cell 17:2517–2526PubMedCrossRefGoogle Scholar
  148. Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jurgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270PubMedCrossRefGoogle Scholar
  149. Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49:387–398PubMedCrossRefGoogle Scholar
  150. Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625PubMedCrossRefGoogle Scholar
  151. Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K, Blilou I, Rouquie D, Benkova E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883PubMedCrossRefGoogle Scholar
  152. Woodrick R, Martin PR, Birman I, Pickett FB (2000) The Arabidopsis embryonic shoot fate map. Development 127:813–820PubMedGoogle Scholar
  153. Ye ZH (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53:183–202PubMedCrossRefGoogle Scholar
  154. Ye ZH, Freshour G, Hahn MG, Burk DH, Zhong RQ (2002) Vascular development in Arabidopsis. Int Rev Cytol 220:225–256PubMedCrossRefGoogle Scholar
  155. Zhang ZJ, Laux T (2011) The asymmetric division of the Arabidopsis zygote: from cell polarity to an embryo axis. Sex Plant Reprod 24:161–169PubMedCrossRefGoogle Scholar
  156. Zhang JZ, Somerville CR (1997) Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2 mutant of Arabidopsis. Proc Natl Acad Sci USA 94:7349–7355PubMedCrossRefGoogle Scholar
  157. Zhang J, Elo A, Helariutta Y (2011) Arabidopsis as a model for wood formation. Curr Opin Biotechnol 22:293–299PubMedCrossRefGoogle Scholar
  158. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64PubMedCrossRefGoogle Scholar
  159. Zhong RQ, Lee CH, Ye ZH (2010) Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci 15:625–632PubMedCrossRefGoogle Scholar
  160. Zhou J, Sebastian J, Lee JY (2011) Signaling and gene regulatory programs in plant vascular stem cells. Genesis 49:885–904PubMedCrossRefGoogle Scholar
  161. Zimmermann W (1930) Die Phylogenie der Pflanzen. Fischer, JenaGoogle Scholar
  162. Zimmermann W (1952) The main results of the telome theory. Palaeobotanist 1:456–470Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada

Personalised recommendations