Control of Auxin Transport by Reactive Oxygen and Nitrogen Species

  • María Fernández-Marcos
  • Luis Sanz
  • Daniel R. Lewis
  • Gloria K. Muday
  • Oscar LorenzoEmail author
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 17)


Auxin transport is a central process in plant growth and development and as a result is highly regulated. The amount and direction of auxin transport is defined by a set of auxin influx and efflux carriers with precise localization that lead to long-distance polar auxin transport. These auxin transport proteins are regulated by transcriptional and posttranslational mechanisms and through protein-targeting machinery that directs them to the appropriate plasma membrane location. A variety of signals initiate regulatory changes in the abundance, activity, or localization of these proteins, with plant hormones, light, and other environmental signaling implicated in this process. Recent evidence indicates that changing levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) may also fine-tune the activity or synthesis of these proteins. This insight has been obtained by using mutants or treatments that alter the levels of ROS or RNS and demonstration of changing auxin transport and abundance of transport proteins. The molecular mechanisms by which ROS and RNS lead to changes in auxin transport are not yet clear but likely include changes in protein synthesis and abundance. This chapter briefly introduces the key proteins and antioxidant molecules that control the levels of ROS and RNS and focuses on the evidence linking these changes to altered auxin transport.


Reactive Oxygen Species Nitric Oxide Auxin Transport Reactive Nitrogen Species Adventitious Root Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research in the Lorenzo laboratory is financed by grants BIO2011-26940, CSD2007-00057 (TRANSPLANTA) from the Ministerio de Educación y Ciencia (Spain) and SA048A10-2 from Junta de Castilla y León. L.S. is supported by a Marie Curie European Reintegration Grant (FP7-PEOPLE-ERG-2008). We acknowledge grants from the National Science Foundation Arabidopsis 2010 program (IOB-0820717) and United States Department of Agriculture and Food Research Initiative (2009-65116-20436) to GKM.


  1. Arc E, Galland M, Cueff G, Godin B, Lounifi I, Job D, Rajjou L (2011) Reboot the system thanks to protein post-translational modifications and proteome diversity: how quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics 11:1606–1618PubMedCrossRefGoogle Scholar
  2. Astier J, Besson-Bard A, Wawer I, Parent C, Rasul S, Jeandroz S, Dat J, Wendehenne D (2011) Nitric oxide signalling in plants: cross-talk with Ca2+ protein kinases and reactive oxygen species. In: Foyer CH, Zhang H (eds) Nitrogen metabolism in plants in the post-genomic era. Annual plant review, vol 42. Wiley, OxfordGoogle Scholar
  3. Bai X, Todd CD, Desikan R, Yang Y, Hu X (2012) N-3-oxo-decanoyl-l-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol 158:725–736PubMedCrossRefGoogle Scholar
  4. Bailly A, Sovero V, Vincenzetti V, Santelia D, Bartnik D, Koenig BW, Mancuso S, Martinoia E, Geisler M (2008) Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J Biol Chem 283:21817–21826PubMedCrossRefGoogle Scholar
  5. Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell 22:376–391PubMedCrossRefGoogle Scholar
  6. Berleth T, Sachs T (2001) Plant morphogenesis: long-distance coordination and local patterning. Curr Opin Plant Biol 4:57–62PubMedCrossRefGoogle Scholar
  7. Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendehenne D (2008a) Nitric oxide in plants: production and cross-talk with Ca2+ signalling. Mol Plant 1:218–228PubMedCrossRefGoogle Scholar
  8. Besson-Bard A, Pugin A, Wendehenne D (2008b) New insights into nitric oxide signalling in plants. Annu Rev Plant Biol 59:21–39PubMedCrossRefGoogle Scholar
  9. Blomster T, Salojarvi J, Sipari N, Brosche M, Ahlfors R, Keinanen M, Overmyer K, Kangasjarvi J (2011) Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiol 157:1866–1883PubMedCrossRefGoogle Scholar
  10. Bouchard R, Bailly A, Blakeslee JJ, Oehring SC, Vincenzetti V, Lee OR, Paponov I, Palme K, Mancuso S, Murphy AS, Schulz B, Geisler M (2006) Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J Biol Chem 281:30603–30612PubMedCrossRefGoogle Scholar
  11. Brightman A, Barr R, Crane F, Morre D (1988) Auxin-stimulated NADH oxidase purified from plasma membrane of soybean. Plant Physiol 86:1264–1269PubMedCrossRefGoogle Scholar
  12. Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535PubMedCrossRefGoogle Scholar
  13. Buer CS, Djordjevic MA (2009) Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J Exp Bot 60:751–763PubMedCrossRefGoogle Scholar
  14. Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16:1191–1205PubMedCrossRefGoogle Scholar
  15. Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396PubMedCrossRefGoogle Scholar
  16. Cheng NH, Liu JZ, Liu X, Wu Q, Thompson SM, Lin J, Chang J, Whitham SA, Park S, Cohen JD, Hirschi KD (2011) Arabidopsis monothiol glutaredoxin, AtGRXS17, is critical for temperature-dependent postembryonic growth and development via modulating auxin response. J Biol Chem 286:20398–20406PubMedCrossRefGoogle Scholar
  17. Corpas F, Barroso J, Carreras A, Valderrama R (2007) Nitrosative stress in plants: a new approach to understand the role of NO in abiotic stress. In: Lamattina L, Polacco JC (eds) Nitric oxide in plant growth, development and stress physiology. Plant cell monographs. Springer, Heidelberg, pp 187–205CrossRefGoogle Scholar
  18. Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905PubMedCrossRefGoogle Scholar
  19. De Tullio MC, Jiang K, Feldman LJ (2010) Redox regulation of root apical meristem organization: connecting root development to its environment. Plant Physiol Biochem 48:328–336PubMedCrossRefGoogle Scholar
  20. Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396PubMedCrossRefGoogle Scholar
  21. Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrasek J, Seifertova D, Tejos R, Meisel LA, Zazimalova E, Gadella TW Jr, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci USA 105:4489–4494PubMedCrossRefGoogle Scholar
  22. Dordas C, Hasinoff BB, Rivoal J, Hill RD (2004) Class 1 haemoglobins, nitrate and NO levels in hypoxic maize cell suspension cultures. Planta 219:66–72PubMedCrossRefGoogle Scholar
  23. Duan Q, Kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107:17821–17826PubMedCrossRefGoogle Scholar
  24. Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci USA 108:18506–18511PubMedCrossRefGoogle Scholar
  25. Fernández-Marcos M, Sanz L, Lorenzo O (2012) Nitric oxide: an emerging regulator of cell elongation during primary root growth. Plant Signal Behav 7:196–200PubMedCrossRefGoogle Scholar
  26. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446PubMedCrossRefGoogle Scholar
  27. Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743PubMedCrossRefGoogle Scholar
  28. Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KF, Smith AP, Baroux C, Grossniklaus U, Muller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194PubMedCrossRefGoogle Scholar
  29. Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428PubMedCrossRefGoogle Scholar
  30. Hernandez I, Alegre L, Van Breusegem F, Munne-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132PubMedCrossRefGoogle Scholar
  31. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166PubMedCrossRefGoogle Scholar
  32. Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670PubMedCrossRefGoogle Scholar
  33. Huang X, Kiefer E, von Rad U, Ernst D, Foissner I, Durner J (2002) Nitric oxide burst and nitric oxide-dependent gene induction in plants. Plant Physiol Biochem 40:625–631CrossRefGoogle Scholar
  34. Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482PubMedCrossRefGoogle Scholar
  35. Igamberdiev AU, Baron K, Manac'h-Little N, Stoimenova M, Hill RD (2005) The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling. Ann Bot 96:557–564PubMedCrossRefGoogle Scholar
  36. Iglesias MJ, Terrile MC, Bartoli CG, D'Ippolito S, Casalongue CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222PubMedCrossRefGoogle Scholar
  37. Ischiropoulos H (2009) Protein tyrosine nitration - an update. Arch Biochem Biophys 484:117–121PubMedCrossRefGoogle Scholar
  38. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):pl1PubMedCrossRefGoogle Scholar
  39. Jensen PJ, Hangarter RP, Estelle M (1998) Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116:455–462PubMedCrossRefGoogle Scholar
  40. Jiang K, Feldman LJ (2003) Root meristem establishment and maintenance: the role of auxin. J Plant Growth Regul 21:432–440CrossRefGoogle Scholar
  41. Jiang K, Zhu T, Diao Z, Huang H, Feldman LJ (2010) The maize root stem cell niche: a partnership between two sister cell populations. Planta 231:411–424PubMedCrossRefGoogle Scholar
  42. Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060PubMedCrossRefGoogle Scholar
  43. Kasprowicz A, Szuba A, Volkmann D, Baluska F, Wojtaszek P (2009) Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices. J Exp Bot 60:1605–1617PubMedCrossRefGoogle Scholar
  44. Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837PubMedGoogle Scholar
  45. Kerk N, Feldman LJ (1995) A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristems. Development 121:2825–2833Google Scholar
  46. Kerk NM, Jiang K, Feldman LJ (2000) Auxin metabolism in the root apical meristem. Plant Physiol 122:925–932PubMedCrossRefGoogle Scholar
  47. Kisu Y, Harada Y, Goto M, Esaka M (1997) Cloning of the pumpkin ascorbate oxidase gene and analysis of a cis-acting region involved in induction by auxin. Plant Cell Physiol 38:631–637PubMedCrossRefGoogle Scholar
  48. Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494PubMedCrossRefGoogle Scholar
  49. Koprivova A, Mugford ST, Kopriva S (2010) Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Rep 29:1157–1167PubMedCrossRefGoogle Scholar
  50. Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945PubMedCrossRefGoogle Scholar
  51. Lewis DR, Muday GK (2009) Measurement of auxin transport in Arabidopsis thaliana. Nat Protocols 4:437–451CrossRefGoogle Scholar
  52. Lewis DR, Miller ND, Splitt BL, Wu GS, Spalding EP (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-Like ABC transporter genes. Plant Cell 19:1838–1850PubMedCrossRefGoogle Scholar
  53. Lewis DR, Ramirez MV, Miller ND, Vallabhaneni P, Ray WK, Helm RF, Winkel BS, Muday GK (2011) Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol 156:144–164PubMedCrossRefGoogle Scholar
  54. Li JH, Liu YQ, Lü P, Lin HF, Bai Y, Wang XC, Chen YL (2009) A signalling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. Plant Physiol 150:114–124PubMedCrossRefGoogle Scholar
  55. Lin D, Nagawa S, Chen J, Cao L, Chen X, Xu T, Li H, Dhonukshe P, Yamamuro C, Friml J, Scheres B, Fu Y, Yang Z (2012) A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Curr Biol 22:1319–1325PubMedCrossRefGoogle Scholar
  56. Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930PubMedCrossRefGoogle Scholar
  57. Liso R, De Tullio MC, Ciraci S, Balestrini R, Larocca N, Bruno L, Chiappetta A, Bitonti MB, Bonfante P, Arrigoni O (2004) Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L. J Exp Bot 55:2589–2597PubMedCrossRefGoogle Scholar
  58. Lombardo C, Graziano C, Polacco J, Lamattina L (2006) Nitric oxide is a positive regulator of root hair development. Plant Signal Behav 1:28–33PubMedCrossRefGoogle Scholar
  59. Ludwikow A, Sadowski J (2008) Gene networks in plant ozone stress response and tolerance. J Integr Plant Biol 50:1256–1267PubMedCrossRefGoogle Scholar
  60. Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15PubMedCrossRefGoogle Scholar
  61. Mathesius U, Schlaman HR, Spaink HP, Of Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34PubMedCrossRefGoogle Scholar
  62. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309PubMedCrossRefGoogle Scholar
  63. Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants – where do we stand? Physiol Plant 138:372–383PubMedCrossRefGoogle Scholar
  64. Murphy A, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211:315–324PubMedCrossRefGoogle Scholar
  65. Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z (2012) ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 10:e1001299PubMedCrossRefGoogle Scholar
  66. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439PubMedCrossRefGoogle Scholar
  67. Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176PubMedCrossRefGoogle Scholar
  68. Pagnussat G, Simontachi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956PubMedCrossRefGoogle Scholar
  69. Palmieri MC, Sell S, Huang X, Scherf M, Werner T, Durner J, Lindermayr C (2008) Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59:177–186PubMedCrossRefGoogle Scholar
  70. Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnol J 2:359–366PubMedCrossRefGoogle Scholar
  71. Pasternak T, Potters G, Caubergs R, Jansen MA (2005) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J Exp Bot 56:1991–2001PubMedCrossRefGoogle Scholar
  72. Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911PubMedCrossRefGoogle Scholar
  73. Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M (2004) Arabidopsis non-symbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:2785–2794PubMedCrossRefGoogle Scholar
  74. Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641PubMedCrossRefGoogle Scholar
  75. Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233PubMedCrossRefGoogle Scholar
  76. Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant Microbe Interact 16:1094–1105PubMedCrossRefGoogle Scholar
  77. Rashotte AM, Poupart J, Waddell CS, Muday GK (2003) Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiol 133:761–772PubMedCrossRefGoogle Scholar
  78. Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861PubMedCrossRefGoogle Scholar
  79. Sanchez-Fernandez R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inze D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–2750PubMedCrossRefGoogle Scholar
  80. Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688PubMedCrossRefGoogle Scholar
  81. Spickett CM, Pitt AR, Morrice N, Kolch W (2006) Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim Biophys Acta 1764:1823–1841PubMedCrossRefGoogle Scholar
  82. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89:444–448PubMedCrossRefGoogle Scholar
  83. Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699PubMedCrossRefGoogle Scholar
  84. Swanson S, Gilroy S (2010) ROS in plant development. Physiol Plant 138:384–392PubMedCrossRefGoogle Scholar
  85. Takahama U (1996) Effects of fusicoccin and indole-3-acetic acid on the levels of ascorbic acid and dehydroascorbic acid in the apoplast during elongation of epicotyl segments of Vigna angularis. Physiol Plant 98:731–736CrossRefGoogle Scholar
  86. Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804PubMedCrossRefGoogle Scholar
  87. Tao LZ, Cheung AY, Wu HM (2002) Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14:2745–2760PubMedCrossRefGoogle Scholar
  88. Terrile MC, París R, Calderón-Villalobos LI, Iglesias MJ, Lamattina L, Estelle M, Casalongué CA (2012) Nitric oxide influences auxin signalling through S-nitrosylation of the Arabidopsis transport inhibitor response1 auxin receptor. Plant J 70:492–500PubMedCrossRefGoogle Scholar
  89. Tognetti VB, Muhlenbock P, Van Breusegem F (2012) Stress homeostasis - the redox and auxin perspective. Plant Cell Environ 35:321–333PubMedCrossRefGoogle Scholar
  90. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846PubMedCrossRefGoogle Scholar
  91. Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616PubMedCrossRefGoogle Scholar
  92. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790PubMedCrossRefGoogle Scholar
  93. Wang P, Du Y, Li Y, Ren D, Song CP (2010) Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22:2981–2998PubMedCrossRefGoogle Scholar
  94. Wu HM, Hazak O, Cheung AY, Yalovsky S (2011) RAC/ROP GTPases and auxin signaling. Plant Cell 23:1208–1218PubMedCrossRefGoogle Scholar
  95. Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • María Fernández-Marcos
    • 1
  • Luis Sanz
    • 1
  • Daniel R. Lewis
    • 2
  • Gloria K. Muday
    • 2
  • Oscar Lorenzo
    • 1
    Email author
  1. 1.Departmento de Fisiología VegetalCentro Hispano-Luso de Investigaciones Agrarias (CIALE). Facultad de Biología. Universidad de SalamancaSalamancaSpain
  2. 2.Department of BiologyWake Forest UniversityWinston-SalemUSA

Personalised recommendations