Skip to main content

A Fertile Field: The Mutual Influence and Parallel Histories of Auxin and Flavonoids

  • Chapter
  • First Online:
Polar Auxin Transport

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 17))

Abstract

Auxin is notable for its influence on almost every aspect of plant growth and development. Its effects are so familiar but they continue to pose questions, features that are mirrored by the flavonoids. Although these secondary metabolites’ biosynthesis is one of the best studied of all pathways, their functions are so broad as to be perplexing. The ubiquity of flavonoids in fruit and flowers and the appearance of anthocyanins in the plant stress response often make these pigments’ presence obvious. Their effects, however, extend beyond these visible roles to communication with other organisms and to auxin transport inhibition. Decades of study have shown that they are capable of altering auxin flow in the root, and inflorescence phenotypes of flavonoid mutants suggest a perturbation of development that could also be related to altered auxin distribution in aerial tissues. A compound that is able to regulate such an important hormone as auxin might be expected to have an enormous impact in the plant, and now quite a body of evidence has accumulated to support this hypothesis—but there remain, nevertheless, questions over its relevance in “real-life” plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Theologis A (2010) The odyssey of auxin. Cold Spring Harb Perspect Biol 2:a004572

    Article  PubMed  CAS  Google Scholar 

  • Auger B, Marnet N, Gautier V, Maia-Grondard A, Leprince F, Renard M, Guyot S, Nesi N, Routaboul JM (2010) A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L. J Agric Food Chem 58:6246–6256

    Article  PubMed  CAS  Google Scholar 

  • Baxter IR, Young JC, Armstrong G et al (2005) A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci USA 102:2649–2654

    Article  PubMed  CAS  Google Scholar 

  • Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067

    PubMed  CAS  Google Scholar 

  • Benjamins R, Galván Ampudia CS, Hooykaas PJJ, Offringa R (2003) PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol 132:1623–1630

    Article  PubMed  CAS  Google Scholar 

  • Benjamins R, Malenica N, Luschnig C (2005) Regulating the regulator: the control of auxin transport. Bioessays 27:1246–1255

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Lee OR et al (2007) Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19:131–147

    Article  PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16:1191–1205

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145:478–490

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK, Djordjevic MA (2008) Implications of long-distance flavonoid movement in Arabidopsis thaliana. Plant Signal Behav 3:415–417

    Article  PubMed  Google Scholar 

  • Buer CS, Djordjevic MA (2009) Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J Exp Bot 60:751–763

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  PubMed  CAS  Google Scholar 

  • Burbulis IE, Iacobucci M, Shirley BW (1996) A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8:1013–1025

    PubMed  CAS  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation and filament elongation. Plant Cell 20:1760–1774

    Article  PubMed  CAS  Google Scholar 

  • Chen RJ, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRA VITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  PubMed  CAS  Google Scholar 

  • Chopra S, Hoshino A, Boddu P, Iida S, Chopra S, Hoshino A, Boddu P, Iida S (2006) Flavonoid pigments as tools in molecular genetics. In: Grotewold E (ed) The science of flavonoids. Springer, Berlin

    Google Scholar 

  • Debeaujon I, Léon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–413

    Article  PubMed  CAS  Google Scholar 

  • Debeaujon I, Peeters AJM, Léon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  PubMed  CAS  Google Scholar 

  • Dietrich P, Sanders D, Hedrich R (2001) The role of ion channels in light-dependent stomatal opening. J Exp Bot 52:1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic MA, Mathesius U, Arioli T, Weinman JJ, Gartner E (1997) Chalcone synthase gene expression in transgenic subterranean clover correlates with localized accumulation of flavonoids. Aust J Plant Physiol 24:119–132

    Article  CAS  Google Scholar 

  • Dobritsa AA, Lei Z, Nishikawa S, Urbanczyk-Wochniak E, Huhman DV, Preuss D, Sumner LW (2010) LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol 153:937–955

    Article  PubMed  CAS  Google Scholar 

  • Feng X-L, Ni W-M, Egle S, Mueller-Roeber B, Xu Z-H, Xue H-W (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61:215–226

    Article  PubMed  CAS  Google Scholar 

  • Feucht W, Dithmar H, Polster J (2004) Nuclei of tea flowers as targets for flavanols. Plant Biol 6:696–701

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Jones AR (2010) Endoplasmic reticulum: the rising compartment in auxin biology. Plant Physiol 154:458–462

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Palme K (2002) Polar auxin transport – old questions and new concepts? Plant Mol Biol 49:273–284

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Blakeslee JJ, Bouchard R et al (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Auxin production. In: Glick BR et al (eds) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, pp 86–133

    Chapter  Google Scholar 

  • Grandmaison J, Ibrahim R (1996) Evidence for nuclear protein binding of flavonol sulfate esters in Flaveria chloraefolia. J Plant Physiol 147:653–660

    Article  CAS  Google Scholar 

  • Grotewold E (ed) (2006) The science of flavonoids. Springer, Berlin

    Google Scholar 

  • Hemm MR, Rider SD, Ogas J, Murry DJ, Chäle C (2004) Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J 38:765–778

    Article  PubMed  CAS  Google Scholar 

  • Hernández I, Van Breusegem F (2011) On the possible role of flavonoids as energy escape valves: novel tools for nature’s Swiss army knife? Plant Sci 179:297–301

    Article  CAS  Google Scholar 

  • Huo X, Schnabel E, Hughes K, Frugoli J (2006) RNAi phenotypes and the localization of a protein: GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul 25:156–165

    Article  PubMed  CAS  Google Scholar 

  • Hutzler P, Fischbach R, Heller W et al (1998) Tissue localization of phenolic compounds in plants by confocal lasers canning microscopy. J Exp Bot 49:953–965

    CAS  Google Scholar 

  • IminN NM, Wu T, Rolfe BG (2007) Factors involved in root formation in Medicago truncatula. J Exp Bot 58:439–451

    Article  CAS  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349

    Article  PubMed  CAS  Google Scholar 

  • Jones P, Messner B, Nakajima J-I, Schäffner A-R, Saito K (2003) UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278:43910–43918

    Article  PubMed  CAS  Google Scholar 

  • Kerhoas L, Aouak D, Cingöz A, Routaboul JM, Lepiniec L, Einhorn J, Birlirakis N (2006) Structural characterization of the major flavonoid glycosides from Arabidopsis thaliana seeds. J Agric Food Chem 54:6603–6612

    Article  PubMed  CAS  Google Scholar 

  • Kim AR, Cho JY, Zou Y, Choi JS, Ching HY (2005) Flavonoids differentially modulate nitric oxide production pathways in lipopolysaccharide-activated RAW264.7 cells. Arch Pharm Res 28:297–304

    Article  PubMed  CAS  Google Scholar 

  • Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    Article  PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J (2006) A novel pathway for subcellular trafficking of AUX1 auxin influx carrier. Plant Cell 18:3171–3181

    Article  PubMed  CAS  Google Scholar 

  • Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11:382–386

    Article  PubMed  CAS  Google Scholar 

  • Kuhn BM, Geisler M, Bigler L, Ringli C (2011) Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiol 156:585–595

    Article  PubMed  CAS  Google Scholar 

  • Kuras M, Stefanowska-Wronka M, Lynch JM, Zobel AM (1999) Cytochemical localization of phenolic compounds in columella cells of the root cap in seeds of Brassica napus - changes in the localization of phenolic compounds during germination. Ann Bot 84:135–143

    Article  CAS  Google Scholar 

  • Lau S, Jürgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746

    Article  PubMed  CAS  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul J-M et al (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  PubMed  CAS  Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    Article  PubMed  Google Scholar 

  • Lewis DR, Ramirez MV, Miller ND et al (2011) Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol 156:144–164

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Oulee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    PubMed  CAS  Google Scholar 

  • Lois R, Buchanan B (1994) Severe sensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation. Planta 194:504–509

    Article  Google Scholar 

  • Ludwig-Müller J, Prinsen E, Rolfe S, Scholes J (2009) Metabolism and plant hormone action during the clubroot disease. J Plant Growth Regul 28:229–244

    Article  CAS  Google Scholar 

  • Maj D, Wielbo J, Marek-Kozaczuk M, Skorupska A (2010) Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiol Res 165:50–60

    Article  PubMed  CAS  Google Scholar 

  • Mane C, Souquet JM, Olle D, Verries C, Veran F, Mazerolles G, Cheynier V, Fulcrand H (2007) Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: application to the characterization of champagne grape varieties. J Agric Food Chem 55:7224–7233

    Article  PubMed  CAS  Google Scholar 

  • Markham KR (1988) Distribution of flavonoids in the lower plants and its evolutionary significance, in the flavonoids. In: Harborne JB (ed) Advances in research since 1980. Chapman and Hall, London, pp 427–468

    Google Scholar 

  • Mathesius U, Bayliss C, Weinman JJ, Schlaman HRM, Spaink HP, Rolfe BG, McCully ME, Djordjevic MA (1998) Flavonoids synthesized in cortical cells during nodule initiation are early developmental markers in white clover. Mol Plant Microbe Interact 11:1223–1232

    Article  CAS  Google Scholar 

  • Mathesius, U., Schlaman, H.R.M., Spaink, H.P., Sautter, C., Rolfe, B.G., and Djordjevic, M.A. (2001). Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14, 23–34.

    Article  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG et al (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  PubMed  CAS  Google Scholar 

  • Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89:7213–7217

    Article  PubMed  CAS  Google Scholar 

  • Montero M, Lobaton CD, Hernandez-Sanmiguel E, Santodomingo J, Vay L, Moreno A, Alvarez J (2004) Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. Biochem J 384:19–24

    Article  PubMed  CAS  Google Scholar 

  • Moscatiello R, Squartini A, Mariani P, Navazio L (2010) Flavonoid-induced calcium signalling in Rhizobium leguminosarum bv. Viciae. New Phytol 188:814–823

    Article  PubMed  CAS  Google Scholar 

  • Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128:935–950

    Article  PubMed  CAS  Google Scholar 

  • Napoli CA, Fahy D, Wang H-Y, Taylor LP (1999) white anther:a petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol 120:615–622

    Article  PubMed  CAS  Google Scholar 

  • Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114

    PubMed  CAS  Google Scholar 

  • Ngaki MN, Louie GV, Philippe RN, Manning G, Pojer F, Bowman ME, Li L, Larsen E, Wurtele ES, Noel JP (2012) Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature; 485:530–533

    PubMed  CAS  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin mediated development. Plant Cell 13:2441–2454

    PubMed  CAS  Google Scholar 

  • Noh B, Bandyopdhyay A, Peer WA, Spalding EP, Murphy AS (2003) Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423:999–1002

    Article  PubMed  CAS  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2:a001594

    Article  PubMed  CAS  Google Scholar 

  • Palme K, Gälweiler L (1999) PIN-pointing the molecular basis of auxin transport. Curr Opin Plant Biol 2:375–381

    Article  PubMed  CAS  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    Article  PubMed  CAS  Google Scholar 

  • Päsold S, Siegel I, Seidel C, Ludwig-Müller J (2010) Flavonoid accumulation in Arabidopsis thaliana root galls caused by the obligate biotrophic pathogen Plasmodiophora brassicae. Mol Plant Pathol 11:545–562

    Article  PubMed  Google Scholar 

  • Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188(15):5417–5427

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis thaliana. Plant Physiol 126:536–548

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Bandyopadhyay A, Markham SN, Blaskeslee JJ, Murphy SS (2003) Localization of PIN proteins in flavonoid-deficient mutants. In: 14th International conference on arabidopsis research [abstract]

    Google Scholar 

  • Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH, Murphy AS et al (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911

    Article  PubMed  CAS  Google Scholar 

  • Pelletier MK, Shirley BW (1996) Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings: coordinate regulation with chalcone synthase and chalcone isomerase. Plant Physiol 111:339–345

    Article  PubMed  CAS  Google Scholar 

  • Pelletier MK, Burbulis IE, Shirley BW (1999) Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Plant Mol Biol 40:45–54

    Article  PubMed  CAS  Google Scholar 

  • Peters NK, Frost JW, Long S (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  PubMed  CAS  Google Scholar 

  • Punyasiria PAN, Abeysinghea ISB, Kumarb V et al (2004) Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431:22–30

    Article  CAS  Google Scholar 

  • Rao RP, Hunter A, Kashpur O, Normanly J, Normanly J (2010) Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi. Genetics 185:211–220

    Article  PubMed  CAS  Google Scholar 

  • Rausher MD (2006) The evolution of flavonoids and their genes. In: The science of flavonoids. Springer, Berlin, pp 175–212

    Google Scholar 

  • Raven JA (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74:163–172

    Article  CAS  Google Scholar 

  • Ringli C, Bigler L, Kuhn BM et al (2008) The modified flavonol glycosylation profile in the Arabidopsis rol1 mutants results in alterations in plant growth and cell shape formation. Plant Cell 20:1470–1481

    Article  PubMed  CAS  Google Scholar 

  • Routaboul J-M, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L et al (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    Article  PubMed  CAS  Google Scholar 

  • Routaboul J-M, Dubos C, Beck G et al (2012) Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J Exp Bot 10:3749–3764

    Article  CAS  Google Scholar 

  • Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 118:101–121

    Article  CAS  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    Article  PubMed  CAS  Google Scholar 

  • Sakata T, Oshinoe T, Miura S et al (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107:8569–8574

    Article  PubMed  CAS  Google Scholar 

  • Santelia D, Henrichs S, Vincenzetti V et al (2008) Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem 283:31218–31226

    Article  PubMed  CAS  Google Scholar 

  • Santos-Buelga C, Escribano-Bailon MT, Lattanzio V (2010) Recent advances in polyphenol research, Vol. 2. Wiley, New York

    Google Scholar 

  • Saslowsky D, Winkel-Shirley B (2001) Localization of flavonoid enzymes in Arabidopsis roots. Plant J 27:37–48

    Google Scholar 

  • Saslowsky DE, Warek U, Winkel BS (2005) Nuclear localization of flavonoid enzymes in Arabidopsis. J Biol Chem 280:23735–23740

    Article  PubMed  CAS  Google Scholar 

  • Seigler DS (1995) Plant secondary metabolism. Kluwer, Boston

    Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM et al (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  PubMed  CAS  Google Scholar 

  • Sloley BD, Urichuk LJ, Morley P, Durkin J, Shan JJ, Pang PKT, Coutts RT (2000) Identification of kaempferol as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of Ginkgo biloba leaves. J Pharm Pharmacol 52:451–459

    Article  PubMed  CAS  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    PubMed  CAS  Google Scholar 

  • Stafford HA (1991) Flavonoid evolution: an enzymic approach. Plant Physiol 96:680–685

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Ishihara H, Huep G et al (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Favory JJ, Gruber H et al (2010) The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ 33:88–103

    PubMed  CAS  Google Scholar 

  • Su Y-H, Liu Y-B, Zhang X-S (2011) Auxin–cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    Article  PubMed  CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  PubMed  CAS  Google Scholar 

  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact 17(10):1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Thirmann K (1965) Toward an endocrinology of higher plants. Recent Prog Hormone Res 21:579–596

    Google Scholar 

  • Thompson E (2005) Llewellyn Smith S. Glover BJ. A MATE-family protein involved in growth and fertility in Arabidopsis. American Society for Plant Biology, Denver

    Google Scholar 

  • Thompson E, Wilkins C, Demidchik V, Davies JM, Glover BJ (2009) An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. J Exp Bot 61:439–451

    Article  PubMed  Google Scholar 

  • Thompson E, Davies JM, Glover BJ (2010) Identifying the transporters of different flavonoids in plants. Plant Signal Behav 5:1–4

    Article  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  PubMed  CAS  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    PubMed  CAS  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S et al (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    Article  PubMed  CAS  Google Scholar 

  • Verwoert IIGS, Verbree EC, Van der Linden KH, Nijkamp HJJ, Stuitje AR (1992) Cloning, nucleotide sequence and expression of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase. J Bacteriol 174:2851–2857

    PubMed  CAS  Google Scholar 

  • Vogt T, Wollenweber E, Taylor LP (1995) The structural requirements of flavonols that induce pollen germination of conditionally male fertile Petunia. Phytochemistry 38(3):589–592

    Article  CAS  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    Article  PubMed  CAS  Google Scholar 

  • Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Spencer JPE, Rice-Evans C (2004) Flavonoids: Antioxidants or signalling molecules? Free Radical Biol Med 36:838–849

    Article  CAS  Google Scholar 

  • Wilson ZA, Song J, Taylor B, Yang C (2011) The final split: the regulation of anther dehiscence. J Exp Bot 62(5):1633–1649

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant Physiol 127:1399–1404

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Carpenter R, Dickinson HG, Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8:805–814

    PubMed  CAS  Google Scholar 

  • Yang H, Wei Z, Xu Z (1997) Effects of specific expression of iaaL in tobacco tapetum on pollen embryogenesis. Sci China C Life Sci 40:384–391

    Article  PubMed  CAS  Google Scholar 

  • Ylstra B, Muskens M, Van Tunen AJ (1996) Flavonols are not essential for fertilization in Arabidopsis thaliana. Plant Mol Biol 32:1155–1158

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Matsuda F et al (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene–metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176

    Article  PubMed  CAS  Google Scholar 

  • Zaat SAJ, Van Brussel AAN, Tak T et al (1989) The ethylene-inhibitor aminoethoxyvinylglycine restores normal nodulation by Rhizobium leguminosarum biovar viciae on Vicia sativa subsp. nigra by suppressing the thick and short roots phenotype. Planta 177:141–150

    Google Scholar 

  • Zhang P, Wang Y, Zhang J, Maddock S, Snook M, Peterson T (2003) A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis. Plant Mol Biol 52:1–15

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elinor Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thompson, E. (2013). A Fertile Field: The Mutual Influence and Parallel Histories of Auxin and Flavonoids. In: Chen, R., Baluška, F. (eds) Polar Auxin Transport. Signaling and Communication in Plants, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35299-7_16

Download citation

Publish with us

Policies and ethics