Advertisement

Auxin and Temperature Stress: Molecular and Cellular Perspectives

  • Kyohei Shibasaki
  • Abidur RahmanEmail author
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 17)

Abstract

Temperature stress is one of the major abiotic stresses that limit plant growth and development and crop productivity worldwide. Plant growth and development is also influenced by endogenous factors such as hormones, and under environmentally stressed conditions. Plants adapt themselves through multiple processes, including a change in hormonal response. Recent evidence indicates that under optimal condition, the plant hormone auxin plays a key role in determining plant development processes through modulating other hormonal responses. However, little is known about the role of auxin under temperature stress. The emerging picture from recent experiments indicates that like under optimal condition, auxin also plays a crucial role in regulating plant growth under temperature stress. In this chapter, we tried to integrate our current understanding on the role of auxin in regulating plant developmental processes under temperature-stressed condition and the future direction of research that may help us in engineering plants/crops for sustainable agriculture.

Keywords

Cold Stress Temperature Stress Cold Acclimation Auxin Transport Auxin Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Research in A.R. lab has been funded by several grants from the Ministry of Education, Sports, Culture, Science, and Technology of Japan and President Fund, Iwate University. We thank Dr. Seiji Tsurumi of Kobe University and Dr. Matsuo Uemura of Iwate University for their invaluable suggestions.

References

  1. Angel A, Song J, Dean C, Howard M (2011) A polycomb-based switch underlying quantitative epigenetic memory. Nature 476:105–108CrossRefPubMedGoogle Scholar
  2. Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2:e106CrossRefPubMedGoogle Scholar
  3. Baskin TI, Peret B, Baluska F, Benfey PN, Bennett M, Forde BG, Gilroy S, Helariutta Y, Hepler PK, Leyser O, Masson PH, Muday GK, Murphy AS, Poethig S, Rahman A, Roberts K, Scheres B, Sharp RE, Somerville C (2010) Shootward and rootward: peak terminology for plant polarity. Trends Plant Sci 15:593–594CrossRefPubMedGoogle Scholar
  4. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465CrossRefPubMedGoogle Scholar
  5. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602CrossRefPubMedGoogle Scholar
  6. Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950CrossRefPubMedGoogle Scholar
  7. Bhalerao RP, Bennett MJ (2003) The case for morphogens in plants. Nat Cell Biol 5:939–943CrossRefPubMedGoogle Scholar
  8. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44CrossRefPubMedGoogle Scholar
  9. Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173CrossRefPubMedGoogle Scholar
  10. Boston RSR, Viitanen PVP, Vierling EE (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222CrossRefPubMedGoogle Scholar
  11. Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799CrossRefPubMedGoogle Scholar
  12. Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439CrossRefPubMedGoogle Scholar
  13. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054CrossRefPubMedGoogle Scholar
  14. Cohen JD, Slovin JP, Hendrickson AM (2003) Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci 8:197–199CrossRefPubMedGoogle Scholar
  15. Dat J, Foyer C, Scott I (1998a) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455–1461CrossRefPubMedGoogle Scholar
  16. Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998b) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357CrossRefPubMedGoogle Scholar
  17. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527CrossRefPubMedGoogle Scholar
  18. Essl D, Dirnberger D, Gomord V, Strasser R, Faye L, Glössl J, Steinkellner H (1999) The N-terminal 77 amino acids from tobacco N-acetylglucosaminyltransferase I are sufficient to retain a reporter protein in the Golgi apparatus of Nicotiana benthamiana cells. FEBS Lett 453:169–173CrossRefPubMedGoogle Scholar
  19. Feraru E, Friml J (2008) PIN polar targeting. Plant Physiol 147:1553–1559CrossRefPubMedGoogle Scholar
  20. Fowlerl DB, Liminl AE, Wang S-Y, Ward RW (1996) Relationship between low-temperature tolerance and vernalization response in wheat and rye. Can J Plant Sci 76:37–42CrossRefGoogle Scholar
  21. Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235CrossRefPubMedGoogle Scholar
  22. Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12CrossRefPubMedGoogle Scholar
  23. Friml J, Jones AR (2010) Endoplasmic reticulum: the rising compartment in auxin biology. Plant Physiol 154:458–462CrossRefPubMedGoogle Scholar
  24. Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K (2002a) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673CrossRefPubMedGoogle Scholar
  25. Friml J, Wiśniewska J, Benkova E, Mendgen K, Palme K (2002b) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809CrossRefPubMedGoogle Scholar
  26. Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865CrossRefPubMedGoogle Scholar
  27. Fukaki H, Fujisawa H, Tasaka M (1996) Gravitropic response of inflorescence stems in Arabidopsis thaliana. Plant Physiol 110:933–943CrossRefPubMedGoogle Scholar
  28. Geldner NN, Friml JJ, Stierhof YDY, Jürgens GG, Palme KK (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428CrossRefPubMedGoogle Scholar
  29. Goldsmith MHM (1977) The polar transport of auxin. Annu Rev Plant Physiol 28:439–478CrossRefGoogle Scholar
  30. Gong M, Li YJ, Chen SZ (1998) Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol 153:488–496CrossRefGoogle Scholar
  31. Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10:597–608CrossRefPubMedGoogle Scholar
  32. Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202CrossRefPubMedGoogle Scholar
  33. Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:e26CrossRefPubMedGoogle Scholar
  34. Harrison BR, Masson PH (2008) ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53:380–392CrossRefPubMedGoogle Scholar
  35. Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA 97:4392–4397CrossRefPubMedGoogle Scholar
  36. Hong SW, Vierling E (2001) Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J 27:25–35CrossRefPubMedGoogle Scholar
  37. Hua J (2009) From freezing to scorching, transcriptional responses to temperature variations in plants. Curr Opin Plant Biol 12:568–573CrossRefPubMedGoogle Scholar
  38. Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384CrossRefPubMedGoogle Scholar
  39. Ikeda Y, Men S, Fischer U, Stepanova AN, Alonso JM, Ljung K, Grebe M (2009) Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nat Cell Biol 11:731–738CrossRefPubMedGoogle Scholar
  40. Inaba M, Suzuki I, Szalontai B, Kanesaki Y, Los DA, Hayashi H, Murata N (2003) Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in synechocystis. J Biol Chem 278:12191–12198CrossRefPubMedGoogle Scholar
  41. Kampinga HH, Brunsting JF, Stege GJ, Burgman PW, Konings AW (1995) Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: role of heat shock proteins. Exp Cell Res 219:536–546CrossRefPubMedGoogle Scholar
  42. Kim JI, Sharkhuu A, Jin JB, Li P, Jeong JC, Baek D, Lee SY, Blakeslee JJ, Murphy AS, Bohnert HJ, Hasegawa PM, Yun DJ, Bressan RA (2007) yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxin-related phenotypes. Plant Physiol 145:722–735CrossRefPubMedGoogle Scholar
  43. Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299CrossRefPubMedGoogle Scholar
  44. Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19:408–413CrossRefPubMedGoogle Scholar
  45. Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242–245CrossRefPubMedGoogle Scholar
  46. Kurup S, Runions J, Köhler U, Laplaze L, Hodge S, Haseloff J (2005) Marking cell lineages in living tissues. Plant J 42:444–453CrossRefPubMedGoogle Scholar
  47. Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695CrossRefPubMedGoogle Scholar
  48. Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146:748–761CrossRefPubMedGoogle Scholar
  49. Leyser O (2006) Dynamic integration of auxin transport and signalling. Curr Biol 16:424–433CrossRefGoogle Scholar
  50. Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002CrossRefGoogle Scholar
  51. Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108:18512–18517CrossRefPubMedGoogle Scholar
  52. Matsui T, Omasa K (2002) Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot 89:683–687CrossRefPubMedGoogle Scholar
  53. Michniewicz MM, Zago MKM, Abas LL, Weijers DD, Schweighofer AA, Meskiene II, Heisler MGM, Ohno CC, Zhang JJ, Huang FF et al (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056CrossRefPubMedGoogle Scholar
  54. Morris DA (1979) The effect of temperature on the velocity of exogenous auxin transport in intact chilling-sensitive and chilling-resistant plants. Planta 146:603–605CrossRefGoogle Scholar
  55. Mravec J, Skůpa P, Bailly A, Hoyerová K, Křeček P, Bielach A, Petrášek J, Zhang J, Gaykova V, Stierhof Y-D et al (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136–1140CrossRefPubMedGoogle Scholar
  56. Muday GK, Rahman A (2008) Auxin transport and the integration of gravitropic growth. In: Gilroy S, Masson P (eds) Plant tropisms. Blackwell, Oxford, UK, pp 47–68Google Scholar
  57. Nadella V, Shipp MJ, Muday GK, Wyatt SE (2006) Evidence for altered polar and lateral auxin transport in the gravity persistent signal (gps) mutants of Arabidopsis. Plant Cell Environ 29:682–690CrossRefPubMedGoogle Scholar
  58. Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794CrossRefPubMedGoogle Scholar
  59. Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V (2009) Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:1684–1689CrossRefPubMedGoogle Scholar
  60. Peer WA, Blakeslee JJ, Yang H, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4:487–504CrossRefPubMedGoogle Scholar
  61. Pollmann S, Neu D, Weiler EW (2003) Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62:293–300CrossRefPubMedGoogle Scholar
  62. Prusinkiewicz P, Rolland-Lagan AG (2006) Modeling plant morphogenesis. Curr Opin Plant Biol 9:83–88CrossRefPubMedGoogle Scholar
  63. Rahman A (2012) Auxin: a regulator of cold stress response. Physiol Plant. doi: 10.1111/j.1399-3054.2012.01617.x
  64. Rahman A, Takahashi M, Shibasaki K, Wu S, Inaba T, Tsurumi S, Baskin TI (2010) Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell 22:1762–1776CrossRefPubMedGoogle Scholar
  65. Rakusova H, Gallego-Bartolome J, Vanstraelen M, Robert HS, Alabadi D, Blazquez MA, Benkova E, Friml J (2011) Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J 67:817–826CrossRefPubMedGoogle Scholar
  66. Reyes FC, Buono R, Otegui MS (2011) Plant endosomal trafficking pathways. Curr Opin Plant Biol 14:666–673CrossRefPubMedGoogle Scholar
  67. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472CrossRefPubMedGoogle Scholar
  68. Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107:8569–8574CrossRefPubMedGoogle Scholar
  69. Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31:629–638CrossRefPubMedGoogle Scholar
  70. Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823–3838CrossRefPubMedGoogle Scholar
  71. Shinozaki KY, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803CrossRefPubMedGoogle Scholar
  72. Solanke AU, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14:70–79CrossRefGoogle Scholar
  73. Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA (2009) Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60:589–601CrossRefPubMedGoogle Scholar
  74. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191CrossRefPubMedGoogle Scholar
  75. Strader LC, Bartel B (2008) A new path to auxin. Nat Chem Biol 4:337–339CrossRefPubMedGoogle Scholar
  76. Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H (2009) Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 106:5430–5435CrossRefPubMedGoogle Scholar
  77. Sukumar P, Edwards KS, Rahman A, DeLong A, Muday GK (2009) PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol 150:722–735CrossRefPubMedGoogle Scholar
  78. Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet 8:e1002594CrossRefPubMedGoogle Scholar
  79. Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P, Tsurumi S, Moore I, Napier R, Kerr ID, Bennett MJ (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16:3069–3083CrossRefPubMedGoogle Scholar
  80. Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738–2754CrossRefPubMedGoogle Scholar
  81. Tang RS, Zheng JC, Jin QZ, Zhang DD, Huang HY, Chen GL (2008) Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, Gas and ABA in rice (Oryza Sativa L.). Plant Growth Regul 54:37–43CrossRefGoogle Scholar
  82. Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176CrossRefPubMedGoogle Scholar
  83. Thomashow MF (1999) PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599CrossRefPubMedGoogle Scholar
  84. Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789CrossRefPubMedGoogle Scholar
  85. Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol 134:1100–1112CrossRefPubMedGoogle Scholar
  86. Vergnolle C, Vaultier M-N, Taconnat L, Renou J-P, Kader J-C, Zachowski A, Ruelland E (2005) The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol 139:1217–1233CrossRefPubMedGoogle Scholar
  87. Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620CrossRefGoogle Scholar
  88. Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168CrossRefPubMedGoogle Scholar
  89. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211CrossRefPubMedGoogle Scholar
  90. Wang X, Li W, Li M, Welti R (2006) Profiling lipid changes in plant response to low temperatures. Physiol Plant 126:90–96CrossRefGoogle Scholar
  91. Wyatt SE, Rashotte AM, Shipp MJ, Robertson D, Muday GK (2002) Mutations in the gravity persistence signal loci in Arabidopsis disrupt the perception and/or signal transduction of gravitropic stimuli. Plant Physiol 130:1426–1435CrossRefPubMedGoogle Scholar
  92. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183PubMedGoogle Scholar
  93. Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179CrossRefPubMedGoogle Scholar
  94. Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371CrossRefPubMedGoogle Scholar
  95. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64CrossRefPubMedGoogle Scholar
  96. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309CrossRefPubMedGoogle Scholar
  97. Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112CrossRefPubMedGoogle Scholar
  98. Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Plant Biology Division, Samuel Roberts Noble FoundationArdmoreUSA
  2. 2.Cryobiofrontier Research Center, Faculty of AgricultureIwate UniversityMoriokaJapan

Personalised recommendations