Skip to main content

Plant Competition: Light Signals Control Polar Auxin Transport

  • Chapter
  • First Online:
Book cover Polar Auxin Transport

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 17))

Abstract

Plants typically grow at high densities in natural vegetations and agricultural fields, where they interact with their neighbours to compete for limited resources, and respond with morphological acclimations that facilitate resource capture. A well-studied example of aboveground responses to neighbours is the shade avoidance syndrome (SAS), which is comprised of enhanced stem and petiole elongation, upward leaf movement, apical dominance and early flowering. SAS is induced upon detection of neighbouring vegetation and the earliest signals to exist are a reduction of the red:far-red light ratio (R:FR), caused by far-red light reflection by neighbouring plants. Plants sense this reduced R:FR through their phytochrome photoreceptors which regulate a signal transduction cascade that induces shade avoidance. A key target of this cascade is the biosynthesis and transport of the plant hormone auxin. It is reviewed here how photoreceptors control auxin biosynthesis and auxin transport to promote shade avoidance and fitness of plants in dense stands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Cashmore AR (1993) HY4 Gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166

    Article  PubMed  CAS  Google Scholar 

  • Ballaré CL, Sánchez RA, Scopel AL, Casal JJ, Ghersa CM (1987) Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Behav 10:551–557

    Google Scholar 

  • Ballaré CL, Scopel AL, Sanchez RA (1990) Far-red radiation reflected from adjacent leaves - an early signal of competition in plant canopies. Science 247:329–332

    Article  PubMed  Google Scholar 

  • Ballaré CL, Casal JJ, Kendrick RE (1991) Responses of light-grown wild-type and long-hypocotyl mutant cucumber seedlings to natural and simulated shade light. Photochem Photobiol 54: 819–826

    Article  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Peer WA, Makam SN, Murphy AS (2004) Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134:28–31

    Article  PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR, Beck CF, Cashmore AR, Christie JM, Hughes J, Jarillo JA, Kagawa T, Kanegae H, Liscum E, Nagatani A, Okada K, Salomon M, Rudiger W, Sakai T, Takano M, Wada M, Watson JC (2001) The phototropin family of photoreceptors. Plant Cell 13:993–997

    PubMed  CAS  Google Scholar 

  • Christie JM (2007) Phototropin blue light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  • Christie JM, Yang H, Rochter GL, Sullivan S, Thomson CE, Lin J, Titapwoatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS (2011) Phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9(6):e1001076

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1880) The power of movement in plants (assisted by F. Darwin). John Murray, London

    Google Scholar 

  • Devlin PF, Yanovsky MJ, Kay SA (2003) A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol 133:1617–1629

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Galván-Ampudia CS, Demarsy E, Łangowski Ł, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–452

    Article  PubMed  CAS  Google Scholar 

  • Duek PD, Fankhauser C (2005) bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci 10:51–54

    Article  PubMed  CAS  Google Scholar 

  • Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA 103:236–241

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA (2008) Shade avoidance. New Phytol 179:930–944

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Griebel T, Zeier J (2008) Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol 147:790–801

    Article  PubMed  CAS  Google Scholar 

  • Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljing K, López-Vidriero I, Franco-Zorilla JM, Solano R, Trevisan M, Pradervind S, Xenarios I, Fankhauser C (2012) Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71:699–711

    Article  PubMed  CAS  Google Scholar 

  • Izaguirre MM, Mazza CA, Biondini M, Baldwin IT, Ballare CL (2006) Remote sensing of future competitors: impacts on plant defenses. Proc Natl Acad Sci USA 103:7170–7174

    Article  PubMed  CAS  Google Scholar 

  • Kanyuka K, Praekelt U, Franklin KA, Billingham OE, Hooley R, Whitelam GC, Halliday KJ (2003) Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses. Plant J 35:57–70

    Article  PubMed  CAS  Google Scholar 

  • Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballaré CL (2011) Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially-independent hormonal cascades. Plant J 67(2):195–207

    Article  PubMed  CAS  Google Scholar 

  • Keuskamp DH, Sasidharan R, Pierik R (2010a) Physiological regulation and functional significance of shade avoidance responses to neighbours. Plant Signal Behav 5:1–8

    Article  Google Scholar 

  • Keuskamp DH, Pollmann S, Voesenek LACJ, Peeters AJM, Pierik R (2010b) Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc Natl Acad Sci USA 107:22740–22744

    Article  PubMed  CAS  Google Scholar 

  • Keuskamp DH, Sasidharan R, Vos I, Peeters AJM, Voesenek LACJ, Pierik R (2011) Blue light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J 67:208–217

    Article  PubMed  CAS  Google Scholar 

  • Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H, Tsukaya H, Nagatani A (2010) Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol 153:1608–1618

    Article  PubMed  CAS  Google Scholar 

  • Leivar P, Tepperman JM, Cohn MM, Monte E, El-Sady B, Erickson E, Quail PH (2012) Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis. Plant Cell 24:1398–1419

    Article  PubMed  CAS  Google Scholar 

  • Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung HS, Ecker JR, Kay SA, Cjory J (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785–790

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trends Plant Sci 16:684–691

    Article  PubMed  CAS  Google Scholar 

  • Morelli G, Ruberti I (2000) Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol 122:621–626

    Article  PubMed  CAS  Google Scholar 

  • Moreno JE, Tao Y, Chory J, Ballaré CL (2009) Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci USA 106:4935–4940

    Article  PubMed  CAS  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302: 81–81

    Article  PubMed  CAS  Google Scholar 

  • Pedmale UV, Liscum E (2007) Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem 282: 1992–2001

    Article  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonuske P, Skupa P, Benková E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Djakovic-Petrovic T, Keuskamp DH, De Wit M, Voesenek LACJ (2009) Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and DELLA proteins in Arabidopsis. Plant Physiol 149:1701–1712

    Article  PubMed  CAS  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes - photosensory perception and signal transduction. Science 268:675–680

    Article  PubMed  CAS  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  PubMed  CAS  Google Scholar 

  • Sasidharan R, Chinnappa CC, Voesenek LACJ, Pierik R (2008) The regulation of cell wall extensibility during shade avoidance: a study using two contrasting ecotypes of Stellaria longipes. Plant Physiol 148:1557–1569

    Article  PubMed  CAS  Google Scholar 

  • Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution - multiple functions for seaweed secondary metabolites. Ecology 76:107–123

    Article  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants - an emerging synthesis. Nature 407:585–591

    Article  PubMed  CAS  Google Scholar 

  • Steindler C, Matteucci A, Sessa G, Weimar T, Ohgishi M, Aoyama T, Morelli G, Ruberti I (1999) Shade avoidance responses are mediated by the ATHB-2 HD-Zip protein, a negative regulator of gene expression. Development 126:4235–4245

    PubMed  CAS  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, DoleZal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk an plant development. Cell 133:177–191

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM (2011) The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23:3961–3973

    Article  PubMed  CAS  Google Scholar 

  • Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E (2008) Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant 1:129–144

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Hayashi KI, Kinoshita T (2012) Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 159:632–641

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Ferrer J, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  PubMed  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  PubMed  CAS  Google Scholar 

  • Weinig C (2000) Plasticity versus canalization: population differences in the timing of shade-avoidance responses. Evolution 54:441–451

    PubMed  CAS  Google Scholar 

  • Went FW (1926) On growth accelerating substances in the coleoptile of Avena sativa. Proc Kon Ned Ak Wet 30:10–19

    Google Scholar 

  • Wisniewska J, Xu J, Seifertová D, Brewer PB, Růžička K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    Article  PubMed  CAS  Google Scholar 

  • Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108: 18518–18523

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Pierik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keuskamp, D.H., Pierik, R. (2013). Plant Competition: Light Signals Control Polar Auxin Transport. In: Chen, R., Baluška, F. (eds) Polar Auxin Transport. Signaling and Communication in Plants, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35299-7_14

Download citation

Publish with us

Policies and ethics