Advertisement

Plant Competition: Light Signals Control Polar Auxin Transport

  • Diederik H. Keuskamp
  • Ronald PierikEmail author
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 17)

Abstract

Plants typically grow at high densities in natural vegetations and agricultural fields, where they interact with their neighbours to compete for limited resources, and respond with morphological acclimations that facilitate resource capture. A well-studied example of aboveground responses to neighbours is the shade avoidance syndrome (SAS), which is comprised of enhanced stem and petiole elongation, upward leaf movement, apical dominance and early flowering. SAS is induced upon detection of neighbouring vegetation and the earliest signals to exist are a reduction of the red:far-red light ratio (R:FR), caused by far-red light reflection by neighbouring plants. Plants sense this reduced R:FR through their phytochrome photoreceptors which regulate a signal transduction cascade that induces shade avoidance. A key target of this cascade is the biosynthesis and transport of the plant hormone auxin. It is reviewed here how photoreceptors control auxin biosynthesis and auxin transport to promote shade avoidance and fitness of plants in dense stands.

Keywords

Polar Auxin Transport Auxin Biosynthesis Cell Wall Loosening Shade Avoidance Auxin Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmad M, Cashmore AR (1993) HY4 Gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166PubMedCrossRefGoogle Scholar
  2. Ballaré CL, Sánchez RA, Scopel AL, Casal JJ, Ghersa CM (1987) Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Behav 10:551–557Google Scholar
  3. Ballaré CL, Scopel AL, Sanchez RA (1990) Far-red radiation reflected from adjacent leaves - an early signal of competition in plant canopies. Science 247:329–332PubMedCrossRefGoogle Scholar
  4. Ballaré CL, Casal JJ, Kendrick RE (1991) Responses of light-grown wild-type and long-hypocotyl mutant cucumber seedlings to natural and simulated shade light. Photochem Photobiol 54: 819–826CrossRefGoogle Scholar
  5. Blakeslee JJ, Bandyopadhyay A, Peer WA, Makam SN, Murphy AS (2004) Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134:28–31PubMedCrossRefGoogle Scholar
  6. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44PubMedCrossRefGoogle Scholar
  7. Briggs WR, Beck CF, Cashmore AR, Christie JM, Hughes J, Jarillo JA, Kagawa T, Kanegae H, Liscum E, Nagatani A, Okada K, Salomon M, Rudiger W, Sakai T, Takano M, Wada M, Watson JC (2001) The phototropin family of photoreceptors. Plant Cell 13:993–997PubMedGoogle Scholar
  8. Christie JM (2007) Phototropin blue light receptors. Annu Rev Plant Biol 58:21–45PubMedCrossRefGoogle Scholar
  9. Christie JM, Yang H, Rochter GL, Sullivan S, Thomson CE, Lin J, Titapwoatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS (2011) Phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9(6):e1001076PubMedCrossRefGoogle Scholar
  10. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861PubMedCrossRefGoogle Scholar
  11. Darwin C (1880) The power of movement in plants (assisted by F. Darwin). John Murray, LondonGoogle Scholar
  12. Devlin PF, Yanovsky MJ, Kay SA (2003) A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol 133:1617–1629PubMedCrossRefGoogle Scholar
  13. Ding Z, Galván-Ampudia CS, Demarsy E, Łangowski Ł, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–452PubMedCrossRefGoogle Scholar
  14. Duek PD, Fankhauser C (2005) bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci 10:51–54PubMedCrossRefGoogle Scholar
  15. Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA 103:236–241PubMedCrossRefGoogle Scholar
  16. Franklin KA (2008) Shade avoidance. New Phytol 179:930–944PubMedCrossRefGoogle Scholar
  17. Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235PubMedCrossRefGoogle Scholar
  18. Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809PubMedCrossRefGoogle Scholar
  19. Griebel T, Zeier J (2008) Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol 147:790–801PubMedCrossRefGoogle Scholar
  20. Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljing K, López-Vidriero I, Franco-Zorilla JM, Solano R, Trevisan M, Pradervind S, Xenarios I, Fankhauser C (2012) Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71:699–711PubMedCrossRefGoogle Scholar
  21. Izaguirre MM, Mazza CA, Biondini M, Baldwin IT, Ballare CL (2006) Remote sensing of future competitors: impacts on plant defenses. Proc Natl Acad Sci USA 103:7170–7174PubMedCrossRefGoogle Scholar
  22. Kanyuka K, Praekelt U, Franklin KA, Billingham OE, Hooley R, Whitelam GC, Halliday KJ (2003) Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses. Plant J 35:57–70PubMedCrossRefGoogle Scholar
  23. Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballaré CL (2011) Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially-independent hormonal cascades. Plant J 67(2):195–207PubMedCrossRefGoogle Scholar
  24. Keuskamp DH, Sasidharan R, Pierik R (2010a) Physiological regulation and functional significance of shade avoidance responses to neighbours. Plant Signal Behav 5:1–8CrossRefGoogle Scholar
  25. Keuskamp DH, Pollmann S, Voesenek LACJ, Peeters AJM, Pierik R (2010b) Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc Natl Acad Sci USA 107:22740–22744PubMedCrossRefGoogle Scholar
  26. Keuskamp DH, Sasidharan R, Vos I, Peeters AJM, Voesenek LACJ, Pierik R (2011) Blue light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J 67:208–217PubMedCrossRefGoogle Scholar
  27. Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H, Tsukaya H, Nagatani A (2010) Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol 153:1608–1618PubMedCrossRefGoogle Scholar
  28. Leivar P, Tepperman JM, Cohn MM, Monte E, El-Sady B, Erickson E, Quail PH (2012) Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis. Plant Cell 24:1398–1419PubMedCrossRefGoogle Scholar
  29. Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung HS, Ecker JR, Kay SA, Cjory J (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785–790PubMedCrossRefGoogle Scholar
  30. Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trends Plant Sci 16:684–691PubMedCrossRefGoogle Scholar
  31. Morelli G, Ruberti I (2000) Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol 122:621–626PubMedCrossRefGoogle Scholar
  32. Moreno JE, Tao Y, Chory J, Ballaré CL (2009) Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci USA 106:4935–4940PubMedCrossRefGoogle Scholar
  33. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302: 81–81PubMedCrossRefGoogle Scholar
  34. Pedmale UV, Liscum E (2007) Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem 282: 1992–2001CrossRefGoogle Scholar
  35. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261PubMedCrossRefGoogle Scholar
  36. Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonuske P, Skupa P, Benková E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918PubMedCrossRefGoogle Scholar
  37. Pierik R, Djakovic-Petrovic T, Keuskamp DH, De Wit M, Voesenek LACJ (2009) Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and DELLA proteins in Arabidopsis. Plant Physiol 149:1701–1712PubMedCrossRefGoogle Scholar
  38. Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes - photosensory perception and signal transduction. Science 268:675–680PubMedCrossRefGoogle Scholar
  39. Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106PubMedCrossRefGoogle Scholar
  40. Sasidharan R, Chinnappa CC, Voesenek LACJ, Pierik R (2008) The regulation of cell wall extensibility during shade avoidance: a study using two contrasting ecotypes of Stellaria longipes. Plant Physiol 148:1557–1569PubMedCrossRefGoogle Scholar
  41. Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution - multiple functions for seaweed secondary metabolites. Ecology 76:107–123CrossRefGoogle Scholar
  42. Smith H (2000) Phytochromes and light signal perception by plants - an emerging synthesis. Nature 407:585–591PubMedCrossRefGoogle Scholar
  43. Steindler C, Matteucci A, Sessa G, Weimar T, Ohgishi M, Aoyama T, Morelli G, Ruberti I (1999) Shade avoidance responses are mediated by the ATHB-2 HD-Zip protein, a negative regulator of gene expression. Development 126:4235–4245PubMedGoogle Scholar
  44. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, DoleZal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk an plant development. Cell 133:177–191PubMedCrossRefGoogle Scholar
  45. Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM (2011) The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23:3961–3973PubMedCrossRefGoogle Scholar
  46. Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E (2008) Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant 1:129–144PubMedCrossRefGoogle Scholar
  47. Takahashi K, Hayashi KI, Kinoshita T (2012) Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 159:632–641PubMedCrossRefGoogle Scholar
  48. Tao Y, Ferrer J, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176PubMedCrossRefGoogle Scholar
  49. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859PubMedCrossRefGoogle Scholar
  50. Weinig C (2000) Plasticity versus canalization: population differences in the timing of shade-avoidance responses. Evolution 54:441–451PubMedGoogle Scholar
  51. Went FW (1926) On growth accelerating substances in the coleoptile of Avena sativa. Proc Kon Ned Ak Wet 30:10–19Google Scholar
  52. Wisniewska J, Xu J, Seifertová D, Brewer PB, Růžička K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883PubMedCrossRefGoogle Scholar
  53. Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108: 18518–18523PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations