Advertisement

Signaling and Transport of Auxin and Plant Development

  • Jianling Peng
  • Liangfa Ge
  • Yuan Wang
  • Rujin ChenEmail author
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 17)

Abstract

The past decades have seen tremendous progress in our understanding of the role of polar auxin transport (PAT) in diverse plant developmental processes and growth responses to biotic and abiotic signals. These studies have been made possible by the advanced molecular and genetic tools developed in the model plant, Arabidopsis thaliana. As other model genetic organisms have been developed, the regulatory mechanisms of polar auxin transport in plant development have been investigated in other plant lineages with interesting biological processes. This chapter reviews the current progress in understanding of the role and the mechanisms of PAT in several model species.

Keywords

Shoot Apical Meristem Auxin Transport Leaf Primordia Polar Auxin Transport KNOX1 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Accession numbers

Amino acid and transcript sequences discussed in this chapter can be found in the NCBI GenBank under the following accession numbers: MtPIN1 (AY115836), MtPIN2 (AY115837), MtPIN3 (AY115838), MtPIN4 (AY115839), MtPIN5 (AY115840), MtPIN6 (AY553209), MtPIN7 (AY553210), MtPIN8 (BK005119), MtPIN9 (AY553211), MtPIN10 (AY553212), MtPIN11 (KC344363), GmPIN1a (KC344367), GmPIN1b (KC344371), GmPIN2a (KC344375), GmPIN2b (KC344379), GmPIN3a (KC344368), GmPIN3b (KC344384), GmPIN4a (KC344366), GmPIN4b (KC344372), GmPIN5 (KC344369), GmPIN6a (KC344376), GmPIN6b (KC344377), GmPIN7a (KC344378), GmPIN7b (KC344370), GmPIN8a (KC344373), GmPIN8b (KC344382), GmPIN9a (KC344374), GmPIN9b (KC344381), GmPIN10a (KC344383), GmPIN10b (KC344364), GmPIN11a (KC344365), and GmPIN11b (KC344380).

AcknowledgmentsThis work was funded in part by an Oklahoma Center for Advancement of Science and Technology (OCAST) grant and the Samuel Roberts Noble Foundation.

References

  1. Allen EK, Allen ON, Newman AS (1953) Pseudonodulation of leguminous plants induced by 2-bromo-3,5-dichlorobenzoic acid. Am J Bot 40:429–435Google Scholar
  2. Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng XW (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1:213–222PubMedGoogle Scholar
  3. Barbez E, Kubes M, Rolcik J, Beziat C, Pencik A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y, Zazimalova E, Petrasek J, Geisler M, Friml J, Kleine-Vehn J (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119–122PubMedGoogle Scholar
  4. Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–1141PubMedGoogle Scholar
  5. Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513PubMedGoogle Scholar
  6. Ben-Gera H, Shwartz I, Shao MR, Shani E, Estelle M, Ori N (2012) ENTIRE and GOBLET promote leaflet development in tomato by modulating auxin response. Plant J 70:903–915PubMedGoogle Scholar
  7. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602PubMedGoogle Scholar
  8. Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950PubMedGoogle Scholar
  9. Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860PubMedGoogle Scholar
  10. Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P (2008) A conserved molecular framework for compound leaf development. Science 322:1835–1839PubMedGoogle Scholar
  11. Boot KJ, van Brussel AA, Tak T, Spaink HP, Kijne JW (1999) Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp. nigra roots. Mol Plant Microbe Interact 12:839–844Google Scholar
  12. Caetano-Anolles G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382PubMedGoogle Scholar
  13. Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14:2045–2058PubMedGoogle Scholar
  14. Carroll BJ, McNeil DL, Gresshoff PM (1985) A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40PubMedGoogle Scholar
  15. Chamovitz DA, Wei N, Osterlund MT, von Arnim AG, Staub JM, Matsui M, Deng XW (1996) The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell 86:115–121PubMedGoogle Scholar
  16. Champagne CE, Goliber TE, Wojciechowski MF, Mei RW, Townsley BT, Wang K, Paz MM, Geeta R, Sinha NR (2007) Compound leaf development and evolution in the legumes. Plant Cell 19:3369–3378PubMedGoogle Scholar
  17. Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117PubMedGoogle Scholar
  18. Cheng X, Peng J, Ma J, Tang Y, Chen R, Mysore KS, Wen J (2012) NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula. New Phytol 195:71–84PubMedGoogle Scholar
  19. Correll MJ, Kiss JZ (2005) The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol 46:317–323PubMedGoogle Scholar
  20. Correll MJ, Coveney KM, Raines SV, Mullen JL, Hangarter RP, Kiss JZ (2003) Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots. Adv Space Res 31:2203–2210PubMedGoogle Scholar
  21. Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97:3718–3723PubMedGoogle Scholar
  22. Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedGoogle Scholar
  23. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119PubMedGoogle Scholar
  24. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527PubMedGoogle Scholar
  25. Ding Z, Wang B, Moreno I, Duplakova N, Simon S, Carraro N, Reemmer J, Pencik A, Chen X, Tejos R, Skupa P, Pollmann S, Mravec J, Petrasek J, Zazimalova E, Honys D, Rolcik J, Murphy A, Orellana A, Geisler M, Friml J (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941PubMedGoogle Scholar
  26. Duek PD, Elmer MV, van Oosten VR, Fankhauser C (2004) The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol 14:2296–2301PubMedGoogle Scholar
  27. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809PubMedGoogle Scholar
  28. Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865PubMedGoogle Scholar
  29. Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230PubMedGoogle Scholar
  30. Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428PubMedGoogle Scholar
  31. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230PubMedGoogle Scholar
  32. Guilfoyle T (2007) Plant biology: sticking with auxin. Nature 446:621–622PubMedGoogle Scholar
  33. Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet 38:942–947PubMedGoogle Scholar
  34. Hay A, Barkoulas M, Tsiantis M (2006) ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133:3955–3961PubMedGoogle Scholar
  35. He JX, Fujioka S, Li TC, Kang SG, Seto H, Takatsuto S, Yoshida S, Jang JC (2003) Sterols regulate development and gene expression in Arabidopsis. Plant Physiol 131:1258–1269PubMedGoogle Scholar
  36. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911PubMedGoogle Scholar
  37. Hirsch AM, LaRue TA (1997) Is the legume nodule a modified root or stem or an organ sui generis? Crit Rev Plant Sci 16:361–392Google Scholar
  38. Hirsch AM, Bhuvaneswari TV, Torrey JG, Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA 86:1244–1248PubMedGoogle Scholar
  39. Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587PubMedGoogle Scholar
  40. Hofer J, Gourlay C, Michael A, Ellis TH (2001) Expression of a class 1 knotted1-like homeobox gene is down-regulated in pea compound leaf primordia. Plant Mol Biol 45:387–398PubMedGoogle Scholar
  41. Holm M, Ma LG, Qu LJ, Deng XW (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16:1247–1259PubMedGoogle Scholar
  42. Huo X, Schnabel E, Hughes K, Frugoli J (2006) RNAi phenotypes and the localization of a protein::GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul 25:156–165PubMedGoogle Scholar
  43. Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED 1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413Google Scholar
  44. Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–109PubMedGoogle Scholar
  45. Jaillais Y, Santambrogio M, Rozier F, Fobis-Loisy I, Miege C, Gaude T (2007) The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130:1057–1070PubMedGoogle Scholar
  46. Jang JC, Fujioka S, Tasaka M, Seto H, Takatsuto S, Ishii A, Aida M, Yoshida S, Sheen J (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev 14:1485–1497PubMedGoogle Scholar
  47. Jang IC, Yang JY, Seo HS, Chua NH (2005) HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev 19:593–602PubMedGoogle Scholar
  48. Jensen PJ, Hangarter RP, Estelle M (1998) Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116:455–462PubMedGoogle Scholar
  49. Jones AM, Herman EM (1993) KDEL-containing auxin-binding protein is secreted to the plasma membrane and cell wall. Plant Physiol 101:595–606PubMedGoogle Scholar
  50. Jones AM, Im KH, Savka MA, Wu MJ, DeWitt NG, Shillito R, Binns AN (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282:1114–1117PubMedGoogle Scholar
  51. Kepinski S, Leyser O (2005a) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedGoogle Scholar
  52. Kepinski S, Leyser O (2005b) Plant development: auxin in loops. Curr Biol 15:R208–210PubMedGoogle Scholar
  53. Kitakura S, Vanneste S, Robert S, Lofke C, Teichmann T, Tanaka H, Friml J (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23:1920–1931PubMedGoogle Scholar
  54. Kleine-Vehn J, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 24:447–473PubMedGoogle Scholar
  55. Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer PB, Wisniewska J, Paciorek T, Benkova E, Friml J (2008a) ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Curr Biol 18:526–531PubMedGoogle Scholar
  56. Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J (2008b) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci USA 105:17812–17817PubMedGoogle Scholar
  57. Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci USA 107:22344–22349PubMedGoogle Scholar
  58. Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N (2009) Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 136:2997–3006PubMedGoogle Scholar
  59. Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426PubMedGoogle Scholar
  60. Laxmi A, Pan J, Morsy M, Chen R (2008) Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS One 3:e1510PubMedGoogle Scholar
  61. Leyser O (2006) Dynamic integration of auxin transport and signalling. Curr Biol 16:R424–433PubMedGoogle Scholar
  62. Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69PubMedGoogle Scholar
  63. Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187PubMedGoogle Scholar
  64. Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18:2066–2073PubMedGoogle Scholar
  65. Mathesius U, Schlaman HR, Spaink HP, Of Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34PubMedGoogle Scholar
  66. Men S, Boutte Y, Ikeda Y, Li X, Palme K, Stierhof YD, Hartmann MA, Moritz T, Grebe M (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10:237–244PubMedGoogle Scholar
  67. Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056PubMedGoogle Scholar
  68. Morelli G, Ruberti I (2002) Light and shade in the photocontrol of Arabidopsis growth. Trends Plant Sci 7:399–404PubMedGoogle Scholar
  69. Mravec J, Skupa P, Bailly A, Hoyerova K, Krecek P, Bielach A, Petrasek J, Zhang J, Gaykova V, Stierhof YD, Dobrev PI, Schwarzerova K, Rolcik J, Seifertova D, Luschnig C, Benkova E, Zazimalova E, Geisler M, Friml J (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136–1140PubMedGoogle Scholar
  70. Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911PubMedGoogle Scholar
  71. Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684PubMedGoogle Scholar
  72. Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jurgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256PubMedGoogle Scholar
  73. Pacios-Bras C, Schlaman HR, Boot K, Admiraal P, Langerak JM, Stougaard J, Spaink HP (2003) Auxin distribution in Lotus japonicus during root nodule development. Plant Mol Biol 52:1169–1180PubMedGoogle Scholar
  74. Palme K, Hesse T, Campos N, Garbers C, Yanofsky MF, Schell J (1992) Molecular analysis of an auxin binding protein gene located on chromosome 4 of Arabidopsis. Plant Cell 4:193–201PubMedGoogle Scholar
  75. Pan J, Fujioka S, Peng J, Chen J, Li G, Chen R (2009) The E3 ubiquitin ligase SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of endocytosis, recycling, and plasma membrane accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana. Plant Cell 21:568–580PubMedGoogle Scholar
  76. Peng J, Chen R (2011) Auxin efflux transporter MtPIN10 regulates compound leaf and flower development in Medicago truncatula. Plant Signal Behav 6:1537–1544PubMedGoogle Scholar
  77. Peng J, Yu J, Wang H, Guo Y, Li G, Bai G, Chen R (2011) Regulation of compound leaf development in Medicago truncatula by fused compound leaf1, a class M KNOX gene. Plant Cell 23:3929–3943PubMedGoogle Scholar
  78. Penmetsa RV, Frugoli JA, Smith LS, Long SR, Cook DR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131:998–1008PubMedGoogle Scholar
  79. Pichler H, Riezman H (2004) Where sterols are required for endocytosis. Biochim Biophys Acta 1666:51–61PubMedGoogle Scholar
  80. Pickett FB, Wilson AK, Estelle M (1990) The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol 94:1462–1466PubMedGoogle Scholar
  81. Quint M, Ito H, Zhang W, Gray WM (2005) Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of SCF ubiquitin-ligases. Plant J 43:371–383PubMedGoogle Scholar
  82. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260PubMedGoogle Scholar
  83. Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Covanova M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zazimalova E, Friml J (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143:111–121PubMedGoogle Scholar
  84. Ruppel NJ, Hangarter RP, Kiss JZ (2001) Red-light-induced positive phototropism in Arabidopsis roots. Planta 212:424–430PubMedGoogle Scholar
  85. Salisbury FJ, Hall A, Grierson CS, Halliday KJ (2007) Phytochrome coordinates Arabidopsis shoot and root development. Plant J 50:429–438PubMedGoogle Scholar
  86. Scheres B, McKhann HI, Zalensky A, Lobler M, Bisseling T, Hirsch AM (1992) The PsENOD12 gene is expressed at two different sites in Afghanistan pea pseudonodules induced by auxin transport inhibitors. Plant Physiol 100:1649–1655PubMedGoogle Scholar
  87. Schnabel EL, Frugoli J (2004) The PIN and LAX families of auxin transport genes in Medicago truncatula. Mol Genet Genomics 272:420–432PubMedGoogle Scholar
  88. Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, Jurgens G (2000) FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev 14:1471–1484PubMedGoogle Scholar
  89. Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev 13:3259–3270PubMedGoogle Scholar
  90. Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423:995–999PubMedGoogle Scholar
  91. Sinha NR, Williams RE, Hake S (1993) Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 7:787–795PubMedGoogle Scholar
  92. Smith LG, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116:21–30PubMedGoogle Scholar
  93. Souza CM, Pichler H (2007) Lipid requirements for endocytosis in yeast. Biochim Biophys Acta 1771:442–454PubMedGoogle Scholar
  94. Takanashi K, Sugiyama A, Yazaki K (2011) Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta 234:73–81PubMedGoogle Scholar
  95. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645PubMedGoogle Scholar
  96. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859PubMedGoogle Scholar
  97. Thimann KV (1936) On the physiology of the formation of nodules on legume roots. Proc Natl Acad Sci USA 22:511–514PubMedGoogle Scholar
  98. Tian Q, Reed JW (2001) Molecular links between light and auxin signaling. J Plant Growth Regul 20:274–280Google Scholar
  99. Timpte C (2001) Auxin binding protein: curiouser and curiouser. Trends Plant Sci 6:586–590PubMedGoogle Scholar
  100. Timpte C, Lincoln C, Pickett FB, Turner J, Estelle M (1995) The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant J 8:561–569PubMedGoogle Scholar
  101. Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) Agr, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol 39:1111–1118PubMedGoogle Scholar
  102. Van De Wiel C, Norris JH, Bochenek B, Dickstein R, Bisseling T, Hirsch AM (1990) Nodulin gene expression and ENOD2 localization in effective, nitrogen-fixing and ineffective, bacteria-free nodules of alfalfa. Plant Cell 2:1009–1017Google Scholar
  103. van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U (2006) Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant. Plant Physiol 140:1494–1506PubMedGoogle Scholar
  104. von Arnim AG, Deng XW (1994) Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79:1035–1045Google Scholar
  105. Von Arnim A, Deng XW (1996) Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol 47:215–243Google Scholar
  106. Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692PubMedGoogle Scholar
  107. Wang H, Chen J, Wen J, Tadege M, Li G, Liu Y, Mysore KS, Ratet P, Chen R (2008) Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol 146:1759–1772PubMedGoogle Scholar
  108. Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625PubMedGoogle Scholar
  109. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735PubMedGoogle Scholar
  110. Wu C, Dickstein R, Cary AJ, Norris JH (1996) The auxin transport inhibitor N-(1-naphthyl) phthalamic acid elicits pseudonodules on nonnodulating mutants of white sweetclover. Plant Physiol 110:501–510PubMedGoogle Scholar
  111. Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H (2005) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17:804–821PubMedGoogle Scholar
  112. Yi C, Deng XW (2005) COP1: from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol 15:618–625PubMedGoogle Scholar
  113. Zhang J, Chen R, Xiao J, Qian C, Wang T, Li H, Ouyang B, Ye Z (2007) A single-base deletion mutation in SlIAA9 gene causes tomato (Solanum lycopersicum) entire mutant. J Plant Res 120:671–678PubMedGoogle Scholar
  114. Zhou C, Han L, Hou C, Metelli A, Qi L, Tadege M, Mysore KS, Wang ZY (2011) Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development. Plant Cell 23:2106–2124PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jianling Peng
    • 1
  • Liangfa Ge
    • 1
  • Yuan Wang
    • 1
  • Rujin Chen
    • 1
    Email author
  1. 1.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA

Personalised recommendations