Advertisement

Auxin Biosynthesis and Polar Auxin Transport During Tropisms in Maize Coleoptiles

  • Takeshi NishimuraEmail author
  • Tomokazu Koshiba
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 17)

Abstract

In 1880, Charles Darwin and his son published a book, The Power of Movement in Plants, in which they described plant tropic behavior. This observation was the first suggestion of the importance of some influence transmitted from the tip to the basal growing parts. Following their suggestion, much research was conducted on plant tropic curvature, which indicated that the influence was a substance, auxin (indole-3-acetic acid; IAA), the first plant hormone to be identified. Tropic responses are generally explained by the Cholodny–Went hypothesis, that is, they occur via differential growth on the two sides of the elongating shoot that results from asymmetrical IAA distribution. In this mini-review, we summarize classic and modern research as the story of tip-specific IAA biosynthesis and its essential role on gravitropic and phototropic curvatures in maize (Zea mays) coleoptiles.

Keywords

Aldehyde Oxidase 13C11 15N2 Gravitropic Response Tropic Curvature Maize Coleoptile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8:249–256CrossRefPubMedGoogle Scholar
  2. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602CrossRefPubMedGoogle Scholar
  3. Boutte Y, Crosnier MT, Carraro N, Traas J, Satiat-Jeunemaitre B (2006) The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. J Cell Sci 119:1255–1265CrossRefPubMedGoogle Scholar
  4. Briggs WR, Tocher RD, Wilson JF (1957) Phototropic auxin redistribution in corn coleoptiles. Science 126:210–212CrossRefPubMedGoogle Scholar
  5. Carraro N, Forestan C, Canova S, Traas J, Varotto S (2006) ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol 142:254–264CrossRefPubMedGoogle Scholar
  6. Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33:403–430CrossRefGoogle Scholar
  7. Cooney TP, Nonhebel HM (1989) The measurement and mass spectral identification of indole-3-pyruvate from tomato shoots. Biochem Biophys Res Commun 162:761–766CrossRefPubMedGoogle Scholar
  8. Darwin C, Darwin F (1880) The power of movement in plants. John Murray, LondonGoogle Scholar
  9. De Smet I, Jurges G (2007) Patterning the axis in plants – auxin in control. Curr Opin Genet Dev 17:337–343CrossRefPubMedGoogle Scholar
  10. Ding Z, Galván-Ampudia CS, Demarsy E, Łangowski Ł, Klein-Vehn J, Fan J, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for phototropic response in Arabidopsis. Nat Cell Biol 13:447–452CrossRefPubMedGoogle Scholar
  11. Epstein E, Cohen JD, Bandurski RS (1980) Concentration and metabolic turnover of indoles in germinating kernels of Zea mays L. Plant Physiol 65:415–421CrossRefPubMedGoogle Scholar
  12. Forestan C, Meda S, Varotto S (2010) ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol 152:1373–1390CrossRefPubMedGoogle Scholar
  13. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809CrossRefPubMedGoogle Scholar
  14. Friml J (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol 89:231–235CrossRefPubMedGoogle Scholar
  15. Fuchs I, Philippar K, Ljung K, Sandberg G, Hedrich R (2003) Blue light regulates an auxin-induced K+-channel gene in the maize coleoptiles. Proc Natl Acad Sci USA 100:11795–11800CrossRefPubMedGoogle Scholar
  16. Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics 279:499–507CrossRefPubMedGoogle Scholar
  17. Gallavotti A, Yang Y, Schmidt RJ, Jackson D (2008a) The relationship between auxin transport and maize branching. Plant Physiol 147:1913–1923CrossRefPubMedGoogle Scholar
  18. Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, McSteen P (2008b) Sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci USA 105:15196–15201CrossRefPubMedGoogle Scholar
  19. Glawischnig E, Tomas A, Eisenreich W, Spiteller P, Bacher A, Gierl A (2000) Auxin biosynthesis in maize kernels. Plant Physiol 123:1109–1119CrossRefPubMedGoogle Scholar
  20. Goldsmith MH (1967a) Movement of pulses of labeled auxin in corn coleoptiles. Plant Physiol 42:258–263CrossRefPubMedGoogle Scholar
  21. Goldsmith MH (1967b) Separation of transit of auxin from uptake: average velocity and reversible inhibition by anaerobic conditions. Science 156:661–663CrossRefPubMedGoogle Scholar
  22. Haga K, Takano M, Neumann R, Iino M (2005) The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17:103–115CrossRefPubMedGoogle Scholar
  23. Iino M (1991) Mediation of tropisms by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles. Plant Cell Environ 14:279–286CrossRefGoogle Scholar
  24. Iino M (1995) Gravitropism and phototropism of maize coleoptiles: evaluation of the Cholodny-Went theory through effects of auxin application and decapitation. Plant Cell Physiol 36:361–367Google Scholar
  25. Iino M, Briggs WR (1984) Growth distribution during first positive phototropic curvature of maize coleoptiles. Plant Cell Environ 7:97–104CrossRefGoogle Scholar
  26. Iino M, Carr DJ (1982) Estimation of free, conjugated, and diffusible indole-3-acetic acid in etiolated maize shoots by the indole-α-pyrone fluorescence method. Plant Physiol 69:950–956CrossRefPubMedGoogle Scholar
  27. Inada S, Ohgishi M, Mayama T, Okada K, Sakai T (2004) RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16:887–896CrossRefPubMedGoogle Scholar
  28. Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–109CrossRefPubMedGoogle Scholar
  29. Knöller AS, Blakeslee JJ, Richarks EL, Peer WA, Murphy AS (2010) Branchytic2/ZmABCB1 functions in IAA export from intercalary meristems. J Exp Bot 61:3689–3696CrossRefPubMedGoogle Scholar
  30. Koshiba T (1993) Cytosolic ascorbate peroxidase in seedlings and leaves of maize (Zea mays). Plant Cell Physiol 34:713–721Google Scholar
  31. Koshiba T, Matsuyama H (1993) An in vitro system of indole-3-acetic acid formation from tryptophan in maize (Zea mays) coleoptile extracts. Plant Physiol 102:1319–1324PubMedGoogle Scholar
  32. Koshiba T, Mito N, Miyakado M (1993) L- and D-Tryptophan aminotransferases from maize coleoptiles. J Plant Res 106:25–29CrossRefGoogle Scholar
  33. Koshiba T, Kamiya Y, Iino M (1995) Biosynthesis of indole-3-acetic acid from L-tryptophan in coleoptile tips of maize (Zea mays). Plant Cell Physiol 36:1503–1510Google Scholar
  34. Koshiba T, Saito E, Ono N, Yamamoto N, Sato M (1996) Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from maize coleoptiles. Plant Physiol 110:781–789PubMedGoogle Scholar
  35. Kriechbaumer V, Park WJ, Piotrowski M, Meeley RB, Gierl A, Glawischnig E (2007) Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis. J Exp Bot 58:4225–4233CrossRefPubMedGoogle Scholar
  36. Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108:18512–18517CrossRefPubMedGoogle Scholar
  37. Matsuda S, Kajizuka T, Kadota A, Nishimura T, Koshiba T (2011) NPH3- and PGP-like genes are exclusively expressed in apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles. J Exp Bot 62:3459–3466CrossRefPubMedGoogle Scholar
  38. Mori Y, Nishimura T, Koshiba T (2005) Vigorous synthesis of indole-3-acetic acid in the apical very tip leads to a constant basipetal flow of the hormone in maize coleoptiles. Plant Sci 168:467–473CrossRefGoogle Scholar
  39. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84CrossRefPubMedGoogle Scholar
  40. Nick P, Schafer E (1988) Interaction of gravi- and phototropic stimulation in the response of maize (Zea mays L.) coleoptiles. Planta 173:213–220CrossRefPubMedGoogle Scholar
  41. Nishimura T, Mori Y, Furukawa T, Kadota A, Koshiba T (2006) Red light causes a reduction in IAA levels at the apical tip by inhibiting de novo biosynthesis from tryptophan in maize coleoptiles. Planta 224:1427–1435CrossRefPubMedGoogle Scholar
  42. Nishimura T, Nakano H, Hayashi K, Niwa C, Koshiba T (2009) Differential downward stream of auxin synthesized at the tip has a key role in gravitropic curvature via TIR1/AFBs-mediated auxin signaling pathways. Plant Cell Physiol 50:1874–1885CrossRefPubMedGoogle Scholar
  43. Nishimura T, Toyooka K, Sato M, Matsumoto S, Lucas MM, Strnad M, Baluska F, Koshiba T (2011) Immunohistochemical observation of indole-3-acetic acid at the IAA synthetic maize coleoptile tips. Plant Signal Behav 6:2013–2022CrossRefPubMedGoogle Scholar
  44. Park WJ, Kriechbaumer V, Moller A, Piotrowski M, Meeley RB, Gierl A, Glawischnig E (2003) The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol 133:794–802CrossRefPubMedGoogle Scholar
  45. Parker KE, Briggs WR (1990a) Transport of indole-3-acetic acid in intact corn coleoptiles. Plant Physiol 94:417–423CrossRefPubMedGoogle Scholar
  46. Parker KE, Briggs WR (1990b) Transport of indole-3-acetic acid during gravitropism in intact maize coleoptiles. Plant Physiol 94:1763–1769CrossRefPubMedGoogle Scholar
  47. Philippar K, Fuchs I, Lüthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Böttger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96:12186–12191CrossRefPubMedGoogle Scholar
  48. Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P (2011) Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–566CrossRefPubMedGoogle Scholar
  49. Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA, Benková E, Friml J (2011) Polarization of PIN3-dependent auxin transporter for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J 67:817–826CrossRefPubMedGoogle Scholar
  50. Schlicht M, Strnad M, Scanlon MJ, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluska F (2006) Auxin Immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal Behav 3:122–133CrossRefGoogle Scholar
  51. Sekimoto H, Seo M, Kawakami N, Komano T, Desloire S, Liotenberg S, Marion-Poll A, Caboche M, Kamiya Y, Koshiba T (1998) Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. Plant Cell Physiol 39:433–442CrossRefPubMedGoogle Scholar
  52. Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116:687–693CrossRefPubMedGoogle Scholar
  53. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Doležal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191CrossRefPubMedGoogle Scholar
  54. Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H (2009) Biochemical analyses of indole-3- acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 106:5430–5435CrossRefPubMedGoogle Scholar
  55. Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176CrossRefPubMedGoogle Scholar
  56. Titapiwatanakun B, Murphy AS (2009) Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition. J Exp Bot 60:1093–1107CrossRefPubMedGoogle Scholar
  57. Tivendale ND, Davies NW, Molesworth PP, Davidson SE, Smith JA, Lowe EK, Reid JB, Ross JJ (2010) Reassessing the role of N-hydroxytryptamine in auxin biosynthesis. Plant Physiol 154: 1957–1965CrossRefPubMedGoogle Scholar
  58. Went FW, Thimann KV (1937) Phytohormones. Macmillan, New YorkGoogle Scholar
  59. Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSOS and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108:18518–18523CrossRefPubMedGoogle Scholar
  60. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735CrossRefPubMedGoogle Scholar
  61. Wright AD, Sampson MB, Neuffer MG, Michalczuk L, Slovin JP, Cohen JD (1991) Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science 254:998–1000CrossRefPubMedGoogle Scholar
  62. Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179CrossRefPubMedGoogle Scholar
  63. Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371CrossRefPubMedGoogle Scholar
  64. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesTokyo Metropolitan UniversityHachioji-shiJapan
  2. 2.Genetically Modified Organism Research CenterNational Institute of Agrobiological SciencesTsukubaJapan

Personalised recommendations