Advertisement

Micro Auto Blogging System by Using Granular Tree-Based Context Model

  • Il-Kyoung Kwon
  • Sang-Yong Lee
Part of the Communications in Computer and Information Science book series (CCIS, volume 339)

Abstract

This paper suggests an automatic blogging system based on context cognition technology considering the context of a user’s location and time. This system is modeled by preprocessing and combining user context and using granular tree. This modeled context infers user’s behavior by using Naive Bayes Classification and user’s destination by using sequence matching technique. Sentences that fit situations are generated and automatically blogged using 4W structure. The evaluation of blogging sentences shows 85.7% accuracy on average and verifies that the context modeling technique that suggests automatic blogging is effective.

Keywords

granular tree Naïve Bayes Classification context model micro blog 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kocaball, A.B., Koçyiğit, A.: Granular Best Match Algorithm for Context-Aware Computing Systems. In: 2006 ACS/IEEE International Conference, pp. 143–149 (2006) Google Scholar
  2. 2.
    Makkonen, J., Ahonen-Myka, H., Salmenkivi, M.: Topic Detection and Tracking with Spatio-Temporal Evidence. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 251–265. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Qin, Z.: Naive Bayes Classification Given Probability Estimation Trees. In: ICMLA 2006 5th International Conference, pp. 34–42 (2006)Google Scholar
  4. 4.
    Korpipaa, P., et al.: Bayesian approach to sensor-based context awareness. Personal and Ubiquitous Computing 7, 113–124 (2003)CrossRefGoogle Scholar
  5. 5.
    Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search. Communications of the ACM 18(6), 333–340 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lin, C.H., Chang, S.C.: Efficient Pattern Matching Algorithm for Memory Architecture. Very Large Scale Integration (VLSI) Systems 19(1), 33–41 (2011)CrossRefGoogle Scholar
  7. 7.
    Statistics Canada, General social survey on time user, http://www.statcan.ca
  8. 8.
    me2day, NHN Corp., http://www.me2day.net

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Il-Kyoung Kwon
    • 1
  • Sang-Yong Lee
    • 2
  1. 1.Dept. Computer EngineeringKongju National UniversityKorea
  2. 2.Dept. Computer Science & EngineeringKongju National UniversityKorea

Personalised recommendations