Advertisement

A Fuzzy Adaptive Fading Kalman Filter Approach for Accuracy Improvement of a Laser Interferometer

  • Pyeongjun Kim
  • Joohyun An
  • Kwanho You
Part of the Communications in Computer and Information Science book series (CCIS, volume 339)

Abstract

The advantage of a laser interferometer is in a high resolution required especially in extremely sensitive nano-metrology. However, there are some restrictions to overcome for precision measurement. One of the problems is a nonlinearity error. In this paper, we compensate for the nonlinearity error by applying the fuzzy adaptive fading Kalman filter (FAFKF) algorithm. To demonstrate the effectiveness of the proposed FAFKF algorithm, we simulated with a real system model. Experimental results show the improved accuracy and reliability.

Keywords

Fuzzy adaptive fading Kalman filter laser interferometer accuracy fuzzy logic error compensation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hou, W., Wilkening, G.: Investigation and compensation of the nonlinearity of heterodyne interferometers. Precis. Eng. 14, 91–98 (1992)CrossRefGoogle Scholar
  2. 2.
    Eom, T.B., Choi, H.S., Lee, S.K.: Frequency stabilization of an internal mirror He-Ne laser by digital control. Rev. Sci. Instr. 73, 221–224 (2002)CrossRefGoogle Scholar
  3. 3.
    Hou, W., Zhang, Y., Hu, H.: A simple technique for eliminating the nonlinearity of a heterodyne interferometry. Meas. Sci. Technol. 20, 1–7 (2009)CrossRefGoogle Scholar
  4. 4.
    Park, T.J., Choi, H.S., Han, C.S., Lee, Y.W.: Real-time precision displacement measurement interferometer using the robust discrete time Kalman filter. Opt. Laser Technol. 37, 229–234 (2005)CrossRefGoogle Scholar
  5. 5.
    Xia, Q., Rao, M., Ying, Y., Shen, X.: Fading Kalman filter with an application. Automatica 30, 1333–1338 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Geng, Y., Wang, J.: Adaptive estimation of multiple fading factors in Kalman filter for navigation applications. GPS Solut. 12, 273–279 (2008)CrossRefGoogle Scholar
  7. 7.
    Jwo, D.J., Wang, S.H.: Adaptive fuzzy strong tracking extended Kalman filter for GPS navigation. Sen. J. IEEE 7, 778–789 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pyeongjun Kim
    • 1
  • Joohyun An
    • 1
  • Kwanho You
    • 1
  1. 1.Department of Electrical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations