Skip to main content

Mixtures of Independent Component Analyzers for EEG Prediction

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 338))

Abstract

This paper presents a new application of independent component analysis mixture modeling (ICAMM) for prediction of electroencephalographic (EEG) signals. Demonstrations in prediction of missing EEG data in a working memory task using classic methods and an ICAMM-based algorithm are included. The performance of the methods is measured by using four error indicators: signal-to-interference (SIR) ratio, Kullback-Leibler divergence, correlation at lag zero and mean structural similarity index. The results show that the ICAMM-based algorithm outperforms the classical spherical splines method which is commonly used in EEG signal processing. Hence, the potential of using mixtures of independent component analyzers (ICAs) to improve prediction, as opposed on estimating only one ICA is demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Common, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, USA (2010)

    Google Scholar 

  2. Salazar, A., Vergara, L., Serrano, A., Igual, J.: A general procedure for learning mixtures of independent component analyzers. Pattern Recognition 43(1), 69–85 (2010)

    Article  MATH  Google Scholar 

  3. Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1078–1089 (2000)

    Article  Google Scholar 

  4. Salazar, A., Vergara, L.: ICA mixtures applied to ultrasonic nondestructive classification of archaeological ceramics. Eurasip Journal on Advances in Signal Processing 2010, article ID 125201, 11 pages (2010), doi:10.1155/2010/125201

    Google Scholar 

  5. Klein, C., Feige, B.: An independent component analysis (ICA) approach to the study of developmental differences in the saccadic contingent negative variation. Biological Psychology 70, 105–114 (2005)

    Article  Google Scholar 

  6. Makeig, S., Westerfield, M., Jung, T.P., Covington, J., Townsend, J., Sejnowski, T.J., Courchesne, E.: Functionally Independent Components of the Late Positive Event-Related Potential during Visual Spatial Attention. Journal of Neuroscience 19(7), 2665–2680 (1999)

    Google Scholar 

  7. Wibral, M., Turi, G., Linden, D.E.J., Kaiser, J., Bledowski, C.: Decomposition of working memory-related scalp ERPs: Crossvalidation of fMRI-constrained source analysis and ICA. Internt J. of Psychol. 67, 200–211 (2008)

    Google Scholar 

  8. Castellanos, N.P., Makarov, V.A.: Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods 158, 300–312 (2006)

    Article  Google Scholar 

  9. Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Processing 90, 2314–2318 (2010)

    Article  MATH  Google Scholar 

  10. Dayan, P., Abbot, L.F.: Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press (2001)

    Google Scholar 

  11. Sternberg, S.: High-speed scanning in human memory. Science 153(3736), 652–654 (1966)

    Article  Google Scholar 

  12. Raghavachari, S., Lisman, J.E., Tully, M., Madsen, J.R., Bromfield, E.B., Kahana, M.J.: Theta oscillations in human cortex during a working-memory task: evidence for local generators. J. of Neurophys. 95, 1630–1638 (2006)

    Article  Google Scholar 

  13. Gorriz, J.M., Puntonet, C.G., Salmeron, G., Lang, E.W.: Time series prediction using ICA algorithms. In: Proc. of 2nd IEEE Internat. W. on Intellig Data Acquisition and Advanc. Comp. Systems: Tech. and App., pp. 226–230 (2003)

    Google Scholar 

  14. Lin, C.-T., Cheng, W.-C., Liang, S.-F.: An On-line ICA-Mixture-Model-Based Self-Constructing Fuzzy Neural Network. IEEE Transactions on Circuits and Systems I: Regular Papers 52(1), 207–221 (2005)

    Article  MathSciNet  Google Scholar 

  15. Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended InfoMax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation 11(2), 417–441 (1999)

    Article  Google Scholar 

  16. Perrin, F., Pernier, J., Bertrand, D., Echallier, J.F.: Spherical splines for scalp potential and current density matching. Electroencep. and Clin. Neurophys. 72, 184–187 (1989)

    Article  Google Scholar 

  17. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Safont, G., Salazar, A., Vergara, L., Gonzalez, A., Vidal, A. (2012). Mixtures of Independent Component Analyzers for EEG Prediction. In: Cho, Hs., Kim, Th., Mohammed, S., Adeli, H., Oh, Mk., Lee, KW. (eds) Green and Smart Technology with Sensor Applications. ICTSM SIA GST 2011 2012 2012. Communications in Computer and Information Science, vol 338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35251-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35251-5_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35250-8

  • Online ISBN: 978-3-642-35251-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics