Skip to main content

On Applying Approximate Entropy to ECG Signals for Knowledge Discovery on the Example of Big Sensor Data

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7669)

Abstract

Information entropy as a universal and fascinating statistical concept is helpful for numerous problems in the computational sciences. Approximate entropy (ApEn), introduced by Pincus (1991), can classify complex data in diverse settings. The capability to measure complexity from a relatively small amount of data holds promise for applications of ApEn in a variety of contexts. In this work we apply ApEn to ECG data. The data was acquired through an experiment to evaluate human concentration from 26 individuals. The challenge is to gain knowledge with only small ApEn windows while avoiding modeling artifacts. Our central hypothesis is that for intra subject information (e.g. tendencies, fluctuations) the ApEn window size can be significantly smaller than for inter subject classification. For that purpose we propose the term truthfulness to complement the statistical validity of a distribution, and show how truthfulness is able to establish trust in their local properties.

Keywords

  • Information entropy
  • ApEn
  • big data
  • knowledge discovery
  • ECG complexity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-35236-2_64
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-35236-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berntson, G.G., Bigger, J.T., Eckberg, D.L., Grossman, P., Kaufmann, P.G., Malik, M., Nagaraja, H.N., Porges, S.W., Saul, J.P., Stone, P.H., van der Molen, M.W.: Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34(6), 623–648 (1997)

    CrossRef  Google Scholar 

  2. Porta, A., Guzzetti, S., Montano, N., Furlan, R., Pagani, M., Malliani, A., Cerutti, S.: Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Transactions on Biomedical Engineering 48(11), 1282–1291 (2001)

    CrossRef  Google Scholar 

  3. Batchinsky, A.I., Salinas, J., Cancio, L.C.: Assessment of the need to perform life-saving interventions using comprehensive analysis of the electrocardiogram and artificial neural networks. In: RTO-MP-HFM-182: Use of Advanced Technologies and New Procedures in Medical Field Operations, vol. 39, pp. 1–16 (2010)

    Google Scholar 

  4. Buchman, T.G.: Nonlinear dynamics, complex systems, and the pathobiology of critical illness. Curr. Opin. Crit. Care 10(5), 378–382 (2004)

    CrossRef  Google Scholar 

  5. Holzinger, A., Popova, E., Peischl, B., Ziefle, M.: On Complexity Reduction of User Interfaces for Safety-Critical Systems. In: Quirchmayr, G., Basl, J., You, I., Xu, L., Weippl, E. (eds.) CD-ARES 2012. LNCS, vol. 7465, pp. 108–122. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  6. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America 88(6), 2297–2301 (1991)

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Simonic, K., Holzinger, A., Bloice, M., Hermann, J.: Optimizing long-term treatment of rheumatoid arthritis with systematic documentation. In: 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 550–554 (May 2011)

    Google Scholar 

  8. Pincus, S.M.: Approximate entropy (ApEn) as a complexity measure. Chaos 5, 110–117 (1995)

    CrossRef  Google Scholar 

  9. Gamboa, H.: Multi-Modal Behavioral Biometrics Based on HCI and Electrophysiology. PhD thesis, Universidade Tecnica de Lisboa, Instituto Superior Tecnico (2008)

    Google Scholar 

  10. Clifford, G., Azuaje, F., McSharry, P.: Artech House engineering in medicine & biology series. In: ECG Statistics, Noise, Artifacts, and Missing Data, pp. 55–99. Artech House (2006)

    Google Scholar 

  11. Akselrod, S., Gordon, D., Ubel, F.A., Shannon, D.C., Berger, A.C., Cohen, R.J.: Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504), 220–222 (1981)

    CrossRef  Google Scholar 

  12. Berntson, G.G., Stowell, J.R.: Ecg artifacts and heart period variability: don’t miss a beat! Psychophysiology 35(1), 127–132 (1998)

    CrossRef  Google Scholar 

  13. Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.H., Suri, J.S.: Automated diagnosis of epileptic eeg using entropies. Biomedical Signal Processing and Control 7(4), 401–408 (2012)

    CrossRef  Google Scholar 

  14. Hornero, R., Aboy, M., Abasolo, D., McNames, J., Wakeland, W., Goldstein, B.: Complex analysis of intracranial hypertension using approximate entropy. Crit. Care Med. 34(1), 87–95 (2006)

    CrossRef  Google Scholar 

  15. Holzinger, A.: On knowledge discovery and interactive intelligent visualization of biomedical data - challenges in human computer interaction & biomedical informatics. In: Conference on e-Business and Telecommunications (ICETE 2012), Rome, Italy, pp. IS9–IS20 (2012)

    Google Scholar 

  16. Holzinger, A., Scherer, R., Seeber, M., Wagner, J., Müller-Putz, G.: Computational Sensemaking on Examples of Knowledge Discovery from Neuroscience Data: Towards Enhancing Stroke Rehabilitation. In: Böhm, C., Khuri, S., Lhotská, L., Renda, M.E. (eds.) ITBAM 2012. LNCS, vol. 7451, pp. 166–168. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  17. Holzinger, A., Simonic, K., Yildirim, P.: Disease-disease relationships for rheumatic diseases: Web-based biomedical textmining and knowledge discovery to assist medical decision making. In: 36th International Conference on Computer Software and Applications, COMPSAC, Izmir, Turkey, pp. 573–580. IEEE (2012)

    Google Scholar 

  18. Takens, F.: Invariants related to dimension and entropy. In: Atas do 13, Col. brasiliero de Matematicas, Rio de Janeiro (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzinger, A. et al. (2012). On Applying Approximate Entropy to ECG Signals for Knowledge Discovery on the Example of Big Sensor Data. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds) Active Media Technology. AMT 2012. Lecture Notes in Computer Science, vol 7669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35236-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35236-2_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35235-5

  • Online ISBN: 978-3-642-35236-2

  • eBook Packages: Computer ScienceComputer Science (R0)