Skip to main content

Critical Infrastructure Management for Telecommunication Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7669))

Abstract

Telecommunication network infrastructures such as cables, satellites, and cellular towers, play an important role in maintaining the stability of society worldwide. The protection of these critical infrastructures and their supporting structure become highly challenged to both public and private organizations. The understanding of interdependency of these infrastructures is the essential step to protect these infrastructures. This paper presents a critical infrastructure detection model to discover the interdependency based on the model from social network and new telecommunication pathways, while this study focuses on social theory into computational constructs. The policy and procedure of protecting critical infrastructures are discussed, and computational results from the proposed model are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Government Accountability Office, Defense Critical Infrastructure: GAO-08-373R, in GAO Reports: U.S. Government Accountability Office, p. 1 (2008)

    Google Scholar 

  2. Eagleman, D.: Four ways the Internet could go down (July 10, 2012), http://www.cnn.com/2012/07/10/tech/web/internet-down-eagleman

  3. Golicic, S.L., McCarthy, T.M., Mentzer, J.T.: Conducting a Market Opportunity Analysis for Air Cargo Operations. Transportation Journal 42, 5–15 (2003)

    Google Scholar 

  4. Schoenwald, D.A., Barton, D.C., Ehlen, M.A.: An agent-based simulation laboratory for economics and infrastructure interdependency. In: Proceedings of the 2004 American Control Conference (2004)

    Google Scholar 

  5. Svendsen, N.K., Wolthusen, S.D.: Graph Models of Critical Infrastructure Interdependencies. In: Bandara, A.K., Burgess, M. (eds.) AIMS 2007. LNCS, vol. 4543, pp. 208–211. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. G. A. Office, Homeland Security: Key Elements of a Risk Management Approach (2001)

    Google Scholar 

  7. Pederson, P., Dudenhoeffer, D., Hartley, S., Permann, M.: Critical Infrastructure Interdependency Modeling: A Survey for U.S. and International Research. I.N. Laboratory (2006)

    Google Scholar 

  8. Granovetter, M.: The strength of weak ties. American Journal of Sociology 78, 1360–1380 (1973)

    Article  Google Scholar 

  9. Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient Immunization Strategies for Computer Networks and Populations. Physical Review Letters 91, 247901 (2003)

    Article  Google Scholar 

  10. Nicolaides, C., Cueto-Felgueroso, L., González, M.C., Juanes, R.: A Metric of Influential Spreading during Contagion Dynamics through the Air Transportation Network. PLoS One 7, e40961 (2012)

    Google Scholar 

  11. Chassin, D.P., Malard, J.M., Posse, C., Gangopadhyaya, A., Lu, N.: Modeling power systems as complex adaptive systems. Pacific Northwest National Laboratory, Richland, Wash. (2004)

    Google Scholar 

  12. Naamati, G., Friedman, Y., Balaga, O., Linial, M.: Susceptibility of the Human Pathways Graphs to Fragmentation by Small Sets of microRNAs. Bioinformatics (February 10, 2012)

    Google Scholar 

  13. Singhal, M., Resat, H.: A domain-based approach to predict protein-protein interactions. BMC Bioinformatics 8, 1–19 (2007)

    Article  Google Scholar 

  14. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  15. Freeman, L.: Centrality in social networks: Conceptual clarification. Social Networks 1, 215–239 (1979)

    Article  Google Scholar 

  16. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Physical Review E 65, 056109 (2002)

    Article  Google Scholar 

  17. Narayanan, H., Roy, S., Patkar, S.: Approximation Algorithms for Min-k-Overlap Problems Using the Principal Lattice of Partitions Approach. Journal of Algorithms 21, 306–330 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, H., Alidaee, B., Glover, F., Kochenberger, G.: Solving Group Technology Problems via Clique Partitioning. International Journal of Flexible Manufacturing Systems 18, 77–97 (2006)

    Article  MATH  Google Scholar 

  19. Billionet, A., Sutter, A.: Minimization of a Quadratic Pseudo-Boolean Function. European Journal of Operational Research 78, 106–115 (1994)

    Article  Google Scholar 

  20. Alkhamis, T.M., Hasan, M., Ahmed, M.A.: Simulated annealing for the unconstrained quadratic pseudo-Boolean function. European Journal of Operational Research 108, 641–652 (1998)

    Article  MATH  Google Scholar 

  21. Amini, M., Alidaee, B., Kochenberger, G.: A Scatter Search Approach to Unconstrained Quadratic Binary Programs. In: Corne, D., Glover (eds.) New Methods in Optimization, pp. 317–330. McGraw-Hill (1999)

    Google Scholar 

  22. Beasley, E.: Heuristic Algorithms for the Unconstrained Binary Quadratic Programming Problem. Working Paper (1998)

    Google Scholar 

  23. Boros, E., Hammer, P.: Pseudo-Boolean Optimization. Discrete Applied Mathematics 123(1-3), 155–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Boros, E., Hammer, P., Sun, X.: The DDT Method for Quadratic 0-1 Minimization. Rutcor Research Center RRR, 39–89 (1989)

    Google Scholar 

  25. Glover, F., Alidaee, B., Rego, C., Kochenberger, G.: One-pass heuristics for large-scale unconstrained binary quadratic problems. European Journal of Operational Research 137, 272–287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Glover, F., Kochenberger, G., Alidaee, B., Amini, M.: Tabu Search with Critical Event Memory: An Enhanced Application for Binary Quadratic Programs. In: Voss, S.M.S., Osman, I., Roucairol, C. (eds.) Meta-Heuristics, Advances and Trends in Local Search Paradigms for Optimization, pp. 93–109. Kluwer (1999)

    Google Scholar 

  27. Glover, F., Kochenberger, G.A., Alidaee, B.: Adaptive memory tabu search for binary quadratic programs. Management Science 44, 336 (1998)

    Article  MATH  Google Scholar 

  28. Katayama, K., Tani, M., Narihisa, H.: Solving Large Binary Quadratic Programming Problems by an Effective Genetic Local Search Algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2000 (2000)

    Google Scholar 

  29. Lodi, A., Allemand, K., Liebling, T.: An evolutionary heuristic for quadratic 0-1 programming. European Journal of Operational Research 119, 662–670 (1999)

    Article  MATH  Google Scholar 

  30. Merz, P., Freisleben, B.: Genetic Algorithms for Binary Quadratic Programming. In: Proceedings of the 1999 International Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 417–424 (1999)

    Google Scholar 

  31. Palubeckis, G.: A Heuristic-Branch and Bound Algorithm for the Unconstrained Quadratic Zero-One Programming Problem. Computing, 284–301 (1995)

    Google Scholar 

  32. Krebs, V.: Uncloaking Terrorist Networks. First Monday 7 (2002), http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/941/863

  33. Saxena, S., Santhanam, K., Basu, A.: Application of Social Network Analysis (SNA) to terrorist networks in Jammu & Kashmir. Strategic Analysis 28, 84–101 (2004)

    Article  Google Scholar 

  34. Tyler, J.R., Wilkinson, D.M., Huberman, B.A.: E-Mail as Spectroscopy: Automated Discovery of Community Structure within Organizations. The Information Society 21, 143–153 (2005)

    Article  Google Scholar 

  35. Borgatti, S.: Identifying sets of key players in a social network. Computational & Mathematical Organization Theory 12, 21–34 (2006)

    Article  MATH  Google Scholar 

  36. Huberman, B., Adamic, L., Ben-Naim, E., Frauenfelder, H., Toroczkai, Z.: Information Dynamics in the Networked World Complex Networks, vol. 650, pp. 371–398. Springer, Heidelberg (2004)

    Google Scholar 

  37. Baumes, J., Goldberg, M., Magdon-Ismail, M., Al Wallace, W.: Discovering Hidden Groups in Communication Networks. In: Chen, H., Moore, R., Zeng, D.D., Leavitt, J. (eds.) ISI 2004. LNCS, vol. 3073, pp. 378–389. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Alidaee, B., Wang, W. (2012). Critical Infrastructure Management for Telecommunication Networks. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds) Active Media Technology. AMT 2012. Lecture Notes in Computer Science, vol 7669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35236-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35236-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35235-5

  • Online ISBN: 978-3-642-35236-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics