Skip to main content

Using SOM as a Tool for Automated Design of Clustering Systems Based on Fuzzy Predicates

  • Conference paper
Advances in Self-Organizing Maps

Abstract

Clustering task is a never-ending research topic. New methods are permanently proposed. In particular, Fuzzy Logic and Self-organizing Maps and their mutual cooperation have demonstrated to be interesting paradigms. We propose a general approach to obtain membership functions for a ranked clustering system based on fuzzy predicates logical operations, considering Gaussian-shaped curves. We find membership functions parameters from trained Self-organizing Maps, which generalize the statistical characteristics of data. The system is self-configured and it has the advantages of other fuzzy approaches. Clustering quality is assessed by labeled data, which allow computing accuracy. The proposal must be tested with more real datasets, though the preliminary results obtained in well-known datasets suggest that it is a promising clustering scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pizzi, N.J., Pedrycz, W.: Classifying High-Dimensional Patterns Using a Fuzzy Logic Discriminant Network. Advances in Fuzzy Systems 2012, 7 (2012)

    Article  Google Scholar 

  2. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Information Sciences 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Thawonmas, R., Abe, S.: Function approximation based on fuzzy rules extracted from partitioned numerical data. Trans. Sys. Man Cyber. Part B 29, 525–534 (1999)

    Article  Google Scholar 

  5. Kahramanli, H., Allahverdi, N.: Rule extraction from trained adaptive neural networks using artificial immune systems. Expert Syst. Appl. 36, 1513–1522 (2009)

    Article  Google Scholar 

  6. Bortolan, G., Pedrycz, W.: An interactive framework for an analysis of ECG signals. Artif. Intell. Med. 24, 109–132 (2002)

    Article  Google Scholar 

  7. Nomura, T., Miyoshi, T.: An adaptive rule extraction with the fuzzy self-organizing map and a comparison with other methods. In: Proceedings of the 3rd International Symposium on Uncertainty Modelling and Analysis (1995)

    Google Scholar 

  8. Drobics, M., Bodenhofer, U., Winiwarter, W.: Mining Clusters and Corresponding Interpretable Descriptions - A Three-Stage Approach. Expert Systems: The Journal of Knowledge Engineering and Neural Networks 19, 224–234 (2002)

    Google Scholar 

  9. Malone, J., McGarry, K., Wermter, S., Bowerman, C.: Data mining using rule extraction from Kohonen Self-organising maps. Neural Computing and Applications 15, 9–17 (2006)

    Article  Google Scholar 

  10. Pal, N.R., Laha, A., Das, J.: Designing fuzzy rule based classifier using Self-organizing feature map for analysis of multispectral satellite images. International Journal of Remote Sensing 26, 2219–2240 (2009)

    Article  Google Scholar 

  11. Sorayya, M., Aishah, S., Sapiyan, B.M., Sharifah Mumtazah, S.A.: A Self organizing map (SOM) guided rule based system for freshwater tropical algal analysis and prediction. Scientific Research and Essays 6, 5279–5284 (2011)

    Google Scholar 

  12. Espin Andrade, R., Mazcorro Téllez, G., Fernández González, E., Marx-Gómez, J., Lecich, M.I.: Compensatory Logic: a fuzzy normative model for decision making. Revista Investigación Operacional 27, 178–193 (2006)

    Google Scholar 

  13. Dubois, H., Prade, D.: Fuzzy Sets and Systems: Theory and Applications. Academic Press Inc., New York (1980)

    MATH  Google Scholar 

  14. Pedrycz, W.: Fuzzy clustering with a knowledge-based guidance. Pattern Recognition Letters 25, 469–480 (2004)

    Article  Google Scholar 

  15. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11, 586–600 (2000)

    Article  Google Scholar 

  16. Kiang, M.Y.: Extending the Kohonen self-organizing map networks for clustering analysis. Computational Statistics Data Analysis 38, 161–180 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bouchet, A., Pastore, J.I., Espín Andrade, R., Brun, M., Ballarin, V.: Arithmetic Mean Based Compensatory Fuzzy Logic. International Journal of Computational Intelligence and Applications 10, 231–243 (2011)

    Article  MATH  Google Scholar 

  18. Kohonen, T.: Self organized formation of topological correct feature maps. Biol. Cybernetics 43, 59–96 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meschino, G.J., Passoni, L.I., Scandurra, A.G., Ballarin, V.L.: Representación automática pseudo color de imágenes médicas mediante Mapas Autoorganizados. In: Simposio Argentino de Informática y Salud, SIS 2006, Ciudad de Mendoza, Argentina (2006)

    Google Scholar 

  20. Vesanto, J.: Data exploration process based on the Self−organizing map (2002)

    Google Scholar 

  21. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Nueva Jersey (1999)

    MATH  Google Scholar 

  22. Meschino, G.J., Passoni, L.I., Scandurra, A.G.: Análisis de Datos Multivariados de Pacientes Diabéticos Internados con Redes Neuronales Autoorganizadas. Investigación Operativa 24, 73–85 (2004)

    Google Scholar 

  23. Vesanto, J.: SOM-Based Data Visualization Methods (1999)

    Google Scholar 

  24. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31, 264–323 (1999)

    Article  Google Scholar 

  25. Ruspini, E.H.: A new approach to clustering. Information and Control 15, 22–32 (1969)

    Article  MATH  Google Scholar 

  26. Forti, A., Foresti, G.L.: Growing hierarchical tree SOM: an unsupervised neural network with dynamic topology. Neural Network 19, 1568–1580 (2006)

    Article  MATH  Google Scholar 

  27. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7, 179–188 (1936)

    Google Scholar 

  28. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems 47, 547–553 (2009)

    Article  Google Scholar 

  29. Kwan, R.K.-S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Transactions on Medical Imaging 18, 1085–1097 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo J. Meschino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meschino, G.J., Comas, D.S., Ballarin, V.L., Scandurra, A.G., Passoni, L.I. (2013). Using SOM as a Tool for Automated Design of Clustering Systems Based on Fuzzy Predicates. In: Estévez, P., Príncipe, J., Zegers, P. (eds) Advances in Self-Organizing Maps. Advances in Intelligent Systems and Computing, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35230-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35230-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35229-4

  • Online ISBN: 978-3-642-35230-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics