Skip to main content

Epigenetic Control of Cell Division

  • Chapter
  • First Online:
Epigenetic Memory and Control in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 18))

Abstract

Posttranslational modification (PTM) of histone tails plays a critical role in the dynamic of chromatin and chromosomes. However, emerging evidence suggests that individual histone modifications do not reliably predict a single functional output [Sims and Reinberg (Nat Rev Mol Cell Biol 9:815–820, 2008)]. In plants, the cell cycle-dependent phosphorylation of histone H3 has been described best; it is hyperphosphorylated at serines 10/28 and at threonines 3/11/32 during both mitosis and meiosis in patterns that are specifically coordinated in both space and time. Although this posttranslational modification is highly conserved, data show that the chromosomal distribution of individual modifications can differ between groups of eukaryotes. We describe the function of plant Aurora and Haspin kinases which have the capacity to phosphorylate H3 and discuss the cross talk between phosphorylation and other PTMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agueci F, Rutten T, Demidov D, Houben A (2012) Arabidopsis AtNek2 kinase is essential and associates with microtubules. Plant Mol Biol Rep 30:339–348

    CAS  Google Scholar 

  • Ajiro K, Yoda K, Utsumi K, Nishikawa Y (1996) Alteration of cell cycle-dependent histone phosphorylations by okadaic acid - induction of mitosis-specific H3 phosphorylation and chromatin condensation in mammalian interphase cells. J Biol Chem 271:13197–13201

    PubMed  CAS  Google Scholar 

  • Ashtiyani RK, Moghaddam AM, Schubert V, Rutten T, Fuchs J, Demidov D, Blattner FR, Houben A (2011) AtHaspin phosphorylates histone H3 at threonine 3 during mitosis and contributes to embryonic patterning in Arabidopsis. Plant J 68:443–454

    PubMed  CAS  Google Scholar 

  • Bajsa J, Pan Z, Duke SO (2011) Transcriptional responses to cantharidin, a protein phosphatase inhibitor, in Arabidopsis thaliana reveal the involvement of multiple signal transduction pathways. Physiol Plant 143:188–205

    PubMed  CAS  Google Scholar 

  • Banerjee T, Chakravarti D (2011) A peek into the complex realm of histone phosphorylation. Mol Cell Biol 31:4858–4873

    PubMed  CAS  Google Scholar 

  • Barber CM, Turner FB, Wang YM, Hagstrom K, Taverna SD, Mollah S, Ueberheide B, Meyer BJ, Hunt DF, Cheung P, Allis CD (2004) The enhancement of histone H4 and H2A serine 1 phosphorylation during mitosis and S-phase is evolutionarily conserved. Chromosoma 112:360–371

    PubMed  CAS  Google Scholar 

  • Belyaev ND, Houben A, Baranczewski P, Schubert I (1997) Histone H4 acetylation in plant heterochromatin is altered during the cell cycle. Chromosoma 106:193–197

    PubMed  CAS  Google Scholar 

  • Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CS, Novotny M, Slamon DJ, Plowman GD (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17:3052–3065

    PubMed  CAS  Google Scholar 

  • Brittle AL, Nanba Y, Ito T, Ohkura H (2007) Concerted action of Aurora B, Polo and NHK-1 kinases in centromere-specific histone 2A phosphorylation. Exp Cell Res 313:2780–2785

    PubMed  CAS  Google Scholar 

  • Caperta AD, Rosa M, Delgado M, Karimi R, Demidov D, Viegas W, Houben A (2008) Distribution patterns of phosphorylated Thr 3 and Thr 32 of histone H3 in plant mitosis and meiosis. Cytogenet Genome Res 122:73–79

    PubMed  CAS  Google Scholar 

  • Cerutti H, Casas-Mollano JA (2009) Histone H3 phosphorylation: universal code or lineage specific dialects? Epigenetics 4(2):71–75

    PubMed  CAS  Google Scholar 

  • Chu CS, Hsu PH, Lo PW, Scheer E, Tora L, Tsai HJ, Tsai MD, Juan LJ (2011) Protein kinase A-mediated serine 35 phosphorylation dissociates histone H1.4 from mitotic chromosome. J Biol Chem 286:35843–35851

    PubMed  CAS  Google Scholar 

  • Chua YL, Channeliere S, Mott E, Gray JC (2005) The bromodomain protein GTE6 controls leaf development in Arabidopsis by histone acetylation at ASYMMETRIC LEAVES1. Genes Dev 19:2245–2254

    PubMed  CAS  Google Scholar 

  • Clements A, Poux AN, Lo WS, Pillus L, Berger SL, Marmorstein R (2003) Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell 12:461–473

    PubMed  CAS  Google Scholar 

  • Cloutier M, Vigneault F, Lachance D, Seguin A (2005) Characterization of a poplar NIMA-related kinase PNek 1 and its potential role in meristematic activity. FEBS Lett 579:4659–4665

    PubMed  CAS  Google Scholar 

  • Crosio C, Fimia GM, Loury R, Kimura M, Okano Y, Zhou H, Sen S, Allis CD, Sassone-Corsi P (2002) Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol Cell Biol 22:874–885

    PubMed  CAS  Google Scholar 

  • Dai J, Higgins JM (2005) Haspin: a mitotic histone kinase required for metaphase chromosome alignment. Cell Cycle 4:665–668

    PubMed  CAS  Google Scholar 

  • Dai J, Sultan S, Taylor SS, Higgins JM (2005) The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 19:472–488

    PubMed  CAS  Google Scholar 

  • Dai J, Sullivan BA, Higgins JM (2006) Regulation of mitotic chromosome cohesion by haspin and aurora B. Dev Cell 11:741–750

    PubMed  CAS  Google Scholar 

  • Dai J, Kateneva AV, Higgins JM (2009) Studies of haspin-depleted cells reveal that spindle-pole integrity in mitosis requires chromosome cohesion. J Cell Sci 122:4168–4176

    PubMed  CAS  Google Scholar 

  • Demidov D, Van Damme D, Geelen D, Blattner FR, Houben A (2005) Identification and dynamics of two classes of aurora-like kinases in Arabidopsis and other plants. Plant Cell 17:836–848

    PubMed  CAS  Google Scholar 

  • Demidov D, Hesse S, Tewes A, Rutten T, Fuchs J, Ashtiyani RK, Lein S, Fischer A, Reuter G, Houben A (2009) Aurora1 phosphorylation activity on histone H3 and its cross-talk with other post-translational histone modifications in Arabidopsis. Plant J 59:221–230

    PubMed  CAS  Google Scholar 

  • DiMaggio P, Garcia B (2010) Mass spectrometry based proteomics for interrogating the histone code. Curr Proteomics 7:177–187

    CAS  Google Scholar 

  • Dong Q, Han F (2012) Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis. Plant J 71(5):800–809

    PubMed  CAS  Google Scholar 

  • Earley KW, Shook MS, Brower-Toland B, Hicks L, Pikaard CS (2007) In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J 52:615–626

    PubMed  CAS  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with Scleroderma. Chromosoma 91:313–321

    PubMed  CAS  Google Scholar 

  • Edmondson DG, Davie JK, Zhou J, Mirnikjoo B, Tatchell K, Dent SY (2002) Site-specific loss of acetylation upon phosphorylation of histone H3. J Biol Chem 277:29496–29502

    PubMed  CAS  Google Scholar 

  • Espino PS, Drobic B, Dunn KL, Davie JR (2005) Histone modifications as a platform for cancer therapy. J Cell Biochem 94:1088–1102

    PubMed  CAS  Google Scholar 

  • Eswaran J, Patnaik D, Filippakopoulos P, Wang F, Stein RL, Murray JW, Higgins JM, Knapp S (2009) Structure and functional characterization of the atypical human kinase haspin. Proc Natl Acad Sci USA 106(48):20198–20203

    PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425:475–479

    PubMed  CAS  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122

    PubMed  CAS  Google Scholar 

  • Friesner JD, Liu B, Culligan K, Britt AB (2005) Ionizing radiation-dependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol Biol Cell 16:2566–2576

    PubMed  CAS  Google Scholar 

  • Fry AM (2002) The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21:6184–6194

    PubMed  CAS  Google Scholar 

  • Fu S, Gao Z, Birchler J, Han F (2012) Dicentric chromosome formation and epigenetics of centromere formation in plants. J Genet Genomics 39:125–130

    PubMed  Google Scholar 

  • Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns–from conservation to diversity. Trends Plant Sci 11:199–208

    PubMed  CAS  Google Scholar 

  • Garcia BA, Barber CM, Hake SB, Ptak C, Turner FB, Busby SA, Shabanowitz J, Moran RG, Allis CD, Hunt DF (2005) Modifications of human histone H3 variants during mitosis. Biochemistry 44:13202–13213

    PubMed  CAS  Google Scholar 

  • Gernand D, Demidov D, Houben A (2003) The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenet Genome Res 101:172–176

    PubMed  CAS  Google Scholar 

  • Giet R, Glover DM (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152:669–682

    PubMed  CAS  Google Scholar 

  • Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T, Takahashi T, Inagaki M (1999) Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274:25543–25549

    PubMed  CAS  Google Scholar 

  • Goto H, Yasui Y, Nigg EA, Inagaki M (2002) Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells 7:11–17

    PubMed  CAS  Google Scholar 

  • Green GR, Gustavsen LC, Poccia DL (1990) Phosphorylation of plant H2A histones. Plant Physiol 93:1241–1245

    PubMed  CAS  Google Scholar 

  • Guerra M, Brasileiro-Vidal AC, Arana P, Puertas MJ (2006) Mitotic microtubule development and histone H3 phosphorylation in the holocentric chromosomes of Rhynchospora tenuis (Cyperaceae). Genetica 126:33–41

    PubMed  CAS  Google Scholar 

  • Gurtley LR, Walters RA, Tobey RA (1975) Sequential phosphorylation of histone subfractions in the Chinese hamster cell cycle. J Biol Chem 250:3936–3944

    Google Scholar 

  • Hake SB, Garcia BA, Kauer M, Baker SP, Shabanowitz J, Hunt DF, Allis CD (2005) Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci USA 102:6344–6349

    PubMed  CAS  Google Scholar 

  • Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103:3238–3243

    PubMed  CAS  Google Scholar 

  • Han A, Lee KH, Hyun S, Lee NJ, Lee SJ, Hwang H, Yu J (2011) Methylation-mediated control of aurora kinase B and Haspin with epigenetically modified histone H3 N-terminal peptides. Bioorg Med Chem 19:2373–2377

    PubMed  CAS  Google Scholar 

  • Hans F, Dimitrov S (2001) Histone H3 phosphorylation and cell division. Oncogene 20:3021–3027

    PubMed  CAS  Google Scholar 

  • Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters JM (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–294

    PubMed  CAS  Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    PubMed  CAS  Google Scholar 

  • Hergeth SP, Dundr M, Tropberger P, Zee BM, Garcia BA, Daujat S, Schneider R (2011) Isoform-specific phosphorylation of human linker histone H1.4 in mitosis by the kinase Aurora B. J Cell Sci 124:1623–1628

    PubMed  CAS  Google Scholar 

  • Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–1180

    PubMed  CAS  Google Scholar 

  • Houben A, Belyaev ND, Turner BM, Schubert I (1996) Differential immunostaining of plant chromosomes by antibodies recognizing acetylated histone H4 variants. Chromosome Res 4:191–194

    PubMed  CAS  Google Scholar 

  • Houben A, Wako T, Furushima-Shimogawara R, Presting G, Kunzel G, Schubert I, Fukui K (1999) The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J 18:675–679

    PubMed  CAS  Google Scholar 

  • Houben A, Demidov D, Rutten T, Scheidtmann KH (2005) Novel phosphorylation of histone H3 at threonine 11 that temporally correlates with condensation of mitotic and meiotic chromosomes in plant cells. Cytogenet Genome Res 109:148–155

    PubMed  CAS  Google Scholar 

  • Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L (2007a) Phosphorylation of histone H3 in plants-A dynamic affair. Biochim Biophys Acta 1769:308–315

    PubMed  CAS  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007b) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283

    PubMed  CAS  Google Scholar 

  • Hoyt MA, Totis L, Roberts BT (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507–517

    PubMed  CAS  Google Scholar 

  • Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K, Bishop DK, Grushcow JM, Brame CJ, Caldwell JA, Hunt DF, Lin R, Smith MM, Allis CD (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279–291

    PubMed  CAS  Google Scholar 

  • Ito T (2007) Role of histone modification in chromatin dynamics. J Biochem 141:609–614

    PubMed  CAS  Google Scholar 

  • Jasencakova Z, Meister A, Walter J, Turner BM, Schubert I (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12:2087–2100

    PubMed  CAS  Google Scholar 

  • Jasencakova Z, Meister A, Schubert I (2001) Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110:83–92

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    PubMed  CAS  Google Scholar 

  • Johansen KM, Johansen J (2006) Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Res 14:393–404

    PubMed  CAS  Google Scholar 

  • Karimi-Ashtiyani RK, Houben A (2012) In vitro phosphorylation of histone H3 at threonine 3 by Arabidopsis Haspin is strongly influenced by post-translational modifications of adjacent amino acids. Molecular Plant (in press) ; doi: 10.1093/mp/sss149

    Google Scholar 

  • Kaszas E, Cande WZ (2000) Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin. J Cell Sci 113:3217–3226

    PubMed  CAS  Google Scholar 

  • Kawabe A, Matsunaga S, Nakagawa K, Kurihara D, Yoneda A, Hasezawa S, Uchiyama S, Fukui K (2005) Characterization of plant Aurora kinases during mitosis. Plant Mol Biol 58:1–13

    PubMed  CAS  Google Scholar 

  • Kawashima SA, Yamagishi Y, Honda T, Ishiguro K, Watanabe Y (2010) Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327:172–177

    PubMed  CAS  Google Scholar 

  • Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330:235–239

    PubMed  CAS  Google Scholar 

  • Kogel D, Prehn JH, Scheidtmann KH (2001) The DAP kinase family of pro-apoptotic proteins: novel players in the apoptotic game. Bioessays 23:352–358

    PubMed  CAS  Google Scholar 

  • Kurihara D, Uchiyama S, Matsunaga S, Fukui K (2005) Mitotic phosphorylation of histone H3 in plants. Plant Cell Physiol 46:S66

    Google Scholar 

  • Kurihara D, Matsunaga S, Kawabe A, Fujimoto S, Noda M, Uchiyama S, Fukui K (2006) Aurora kinase is required for chromosome segregation in tobacco BY-2 cells. Plant J 48:572–580

    PubMed  CAS  Google Scholar 

  • Kurihara D, Matsunaga S, Omura T, Higashiyama T, Fukui K (2011) Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase. BMC Plant Biol 11:73

    PubMed  CAS  Google Scholar 

  • Lafos M, Schubert D (2009) Balance of power-dynamic regulation of chromatin in plant development. Biol Chem 390:1113–1123

    PubMed  CAS  Google Scholar 

  • Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D (2011) Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 7:e1002040

    PubMed  CAS  Google Scholar 

  • Lee S, Horn V, Julien E, Liu Y, Wysocka J, Bowerman B, Hengartner MO, Herr W (2007) Epigenetic regulation of histone H3 serine 10 phosphorylation status by HCF-1 proteins in C. elegans and mammalian cells. PLoS One 2:e1213

    PubMed  Google Scholar 

  • Li Y, Butenko Y, Grafi G (2005) Histone deacetylation is required for progression through mitosis in tobacco cells. Plant J 41:346–352

    PubMed  CAS  Google Scholar 

  • Li B, Gogol M, Carey M, Lee D, Seidel C, Workman JL (2007) Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316:1050–1054

    PubMed  CAS  Google Scholar 

  • Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5:917–926

    PubMed  CAS  Google Scholar 

  • Loidl P (2004) A plant dialect of the histone language. Trends Plant Sci 9:84–90

    PubMed  CAS  Google Scholar 

  • Loury R, Sassone-Corsi P (2004) Analysis of histone phosphorylation: coupling intracellular signaling to chromatin remodeling. Methods Enzymol 377:197–212

    PubMed  CAS  Google Scholar 

  • Macdonald N, Welburn JP, Noble ME, Nguyen A, Yaffe MB, Clynes D, Moggs JG, Orphanides G, Thomson S, Edmunds JW, Clayton AL, Endicott JA, Mahadevan LC (2005) Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol Cell 20:199–211

    PubMed  CAS  Google Scholar 

  • MacKintosh C, MacKintosh RM (1994) Inhibitors of protein kinases and phosphatases. Trends Biochem Sci 19:444–448

    PubMed  CAS  Google Scholar 

  • Manzanero S, Arana P, Puertas MJ, Houben A (2000) The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis. Chromosoma 109:308–317

    PubMed  CAS  Google Scholar 

  • Manzanero S, Rutten T, Kotseruba V, Houben A (2002) Alterations in the distribution of histone H3 phosphorylation in mitotic plant chromosomes in response to cold treatment and the protein phosphatase inhibitor cantharidin. Chromosome Res 10:467–476

    PubMed  CAS  Google Scholar 

  • Metzger E, Yin N, Wissmann M, Kunowska N, Fischer K, Friedrichs N, Patnaik D, Higgins JM, Potier N, Scheidtmann KH, Buettner R, Schule R (2008) Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 10:53–60

    PubMed  CAS  Google Scholar 

  • Motose H, Tominaga R, Wada T, Sugiyama M, Watanabe Y (2008) A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules. Plant J 54:829–844

    PubMed  CAS  Google Scholar 

  • Murnion ME, Adams RR, Callister DM, Allis CD, Earnshaw WC, Swedlow JR (2001) Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J Biol Chem 276:26656–26665

    PubMed  CAS  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:1886–1893

    PubMed  CAS  Google Scholar 

  • Nespoli A, Vercillo R, di Nola L, Diani L, Giannattasio M, Plevani P, Muzi-Falconi M (2006) Alk1 and Alk2 are two new cell cycle-regulated haspin-like proteins in budding yeast. Cell Cycle 5:1464–1471

    PubMed  CAS  Google Scholar 

  • O’Connell MJ, Krien MJ, Hunter T (2003) Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 13:221–228

    PubMed  Google Scholar 

  • Osmani AH, O’Donnell K, Pu RT, Osmani SA (1991) Activation of the nimA protein kinase plays a unique role during mitosis that cannot be bypassed by absence of the bimE checkpoint. EMBO J 10:2669–2679

    PubMed  CAS  Google Scholar 

  • Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14:R546–R551

    PubMed  CAS  Google Scholar 

  • Petrovska B, Cenklova V, Pochylova Z, Kourova H, Doskocilova A, Plihal O, Binarova L, Binarova P (2012) Plant aurora kinases play a role in maintenance of primary meristems and control of endoreduplication. New Phytol 193:590–604

    PubMed  CAS  Google Scholar 

  • Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13:2687–2702

    PubMed  CAS  Google Scholar 

  • Polioudaki H, Markaki Y, Kourmouli N, Dialynas G, Theodoropoulos PA, Singh PB, Georgatos SD (2004) Mitotic phosphorylation of histone H3 at threonine 3. FEBS Lett 560:39–44

    PubMed  CAS  Google Scholar 

  • Preuss U, Landsberg G, Scheidtmann KH (2003) Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res 31:878–885

    PubMed  CAS  Google Scholar 

  • Prigent C, Dimitrov S (2003) Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 116:3677–3685

    PubMed  CAS  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599

    PubMed  CAS  Google Scholar 

  • Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12:162–169

    PubMed  CAS  Google Scholar 

  • Rybaczek D, Bodys A, Maszewski J (2007) H2AX foci in late S/G2- and M-phase cells after hydroxyurea- and aphidicolin-induced DNA replication stress in Vicia. Histochem Cell Biol 128:227–241

    PubMed  CAS  Google Scholar 

  • Sanchez Mde L, Caro E, Desvoyes B, Ramirez-Parra E, Gutierrez C (2008) Chromatin dynamics during the plant cell cycle. Semin Cell Dev Biol 19:537–546

    PubMed  Google Scholar 

  • Sanchez-Moran E, Santos JL, Jones GH, Franklin FCH (2007) ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev 21:2220–2233

    PubMed  CAS  Google Scholar 

  • Schroeder-Reiter E, Houben A, Wanner G (2003) Immunogold labeling of chromosomes for scanning electron microscopy: a closer look at phosphorylated histone H3 in mitotic metaphase chromosomes of Hordeum vulgare. Chromosome Res 11:585–596

    PubMed  CAS  Google Scholar 

  • Schroeder-Reiter E, Sanei M, Houben A, Wanner G (2012) Current SEM techniques for de- and re-construction of centromeres to determine 3D CENH3 distribution in barley mitotic chromosomes. J Microsc 246:96–106

    PubMed  CAS  Google Scholar 

  • Schulmeister A, Schmid M, Thompson EM (2007) Phosphorylation of the histone H3.3 variant in mitosis and meiosis of the urochordate Oikopleura dioica. Chromosome Res 15:189–201

    PubMed  CAS  Google Scholar 

  • Sen S, Zhou H, Zhang RD, Yoon DS, Vakar-Lopez F, Ito S, Jiang F, Johnston D, Grossman HB, Ruifrok AC, Katz RL, Brinkley W, Czerniak B (2002) Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst 94:1320–1329

    PubMed  CAS  Google Scholar 

  • Shi L, Wang J, Hong F, Spector DL, Fang Y (2011) Four amino acids guide the assembly or disassembly of Arabidopsis histone H3.3-containing nucleosomes. Proc Natl Acad Sci USA 108:10574–10578

    PubMed  CAS  Google Scholar 

  • Sims RJ 3rd, Reinberg D (2008) Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol 9:815–820

    PubMed  CAS  Google Scholar 

  • Stroud H, Otero S, Desvoyes B, Ramirez-Parra E, Jacobsen SE, Gutierrez C (2012) Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci USA 109:5370–5375

    PubMed  CAS  Google Scholar 

  • Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123:1213–1226

    PubMed  CAS  Google Scholar 

  • Sweet MT, Carlson G, Cook RG, Nelson D, Allis CD (1997) Phosphorylation of linker histones by a protein kinase A-like activity in mitotic nuclei. J Biol Chem 272:916–923

    PubMed  CAS  Google Scholar 

  • Tamada H, Van Thuan N, Reed P, Nelson D, Katoku-Kikyo N, Wudel J, Wakayama T, Kikyo N (2006) Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol Cell Biol 26:1259–1271

    PubMed  CAS  Google Scholar 

  • Tanaka H, Yoshimura Y, Nozaki M, Yomogida K, Tsuchida J, Tosaka Y, Habu T, Nakanishi T, Okada M, Nojima H, Nishimune Y (1999) Identification and characterization of a haploid germ cell-specific nuclear protein kinase (Haspin) in spermatid nuclei and its effects on somatic cells. J Biol Chem 274:17049–17057

    PubMed  CAS  Google Scholar 

  • Tatsuka M, Katayama H, Ota T, Tanaka T, Odashima S, Suzuki F, Terada Y (1998) Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res 58:4811–4816

    PubMed  CAS  Google Scholar 

  • Thiriet C, Hayes JJ (2005) Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol Cell 18:617–622

    PubMed  CAS  Google Scholar 

  • Van Damme D, De Rybel B, Gudesblat G, Demidov D, Grunewald W, De Smet I, Houben A, Beeckman T, Russinova E (2011) Arabidopsis alpha aurora kinases function in formative cell division plane orientation. Plant Cell 23:4013–4024

    PubMed  Google Scholar 

  • Van Hooser A, Goodrich DW, Allis CD, Brinkley BR, Mancini MA (1998) Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J Cell Sci 111:3497–3506

    PubMed  Google Scholar 

  • Vigneault F, Lachance D, Cloutier M, Pelletier G, Levasseur C, Seguin A (2007) Members of the plant NIMA-related kinases are involved in organ development and vascularization in poplar, Arabidopsis and rice. Plant J 51:575–588

    PubMed  CAS  Google Scholar 

  • Vyskot B, Siroky J, Hladilova R, Belyaev ND, Turner BM (1999) Euchromatic domains in plant chromosomes as revealed by H4 histone acetylation and early DNA replication. Genome 42:343–350

    PubMed  CAS  Google Scholar 

  • Wako T, Fukuda M, Furushima-Shimogawara R, Belyaev ND, Fukui K (2002) Cell cycle-dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley. Plant Mol Biol 49:645–653

    PubMed  CAS  Google Scholar 

  • Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, Stukenberg PT, Gorbsky GJ, Higgins JM (2010) Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330:231–235

    PubMed  CAS  Google Scholar 

  • Wang F, Ulyanova NP, van der Waal MS, Patnaik D, Lens SM, Higgins JM (2011) A positive feedback loop involving haspin and aurora B promotes CPC accumulation at centromeres in mitosis. Curr Biol 21:1061–1069

    PubMed  CAS  Google Scholar 

  • Wanner G, Formanek H (2000) A new chromosome model. J Struct Biol 132:147–161

    PubMed  CAS  Google Scholar 

  • Winter S, Simboeck E, Fischle W, Zupkovitz G, Dohnal I, Mechtler K, Ammerer G, Seiser C (2008) 14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J 27:88–99

    PubMed  CAS  Google Scholar 

  • Wozniak RJ, Klimecki WT, Lau SS, Feinstein Y, Futscher BW (2007) 5-Aza-2′-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene 26:77–90

    PubMed  CAS  Google Scholar 

  • Xu DZ, Bai JX, Duan Q, Costa M, Dai W (2009) Covalent modifications of histones during mitosis and meiosis. Cell Cycle 8:3688–3694

    PubMed  CAS  Google Scholar 

  • Yamagishi Y, Honda T, Tanno Y, Watanabe Y (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330:239–243

    PubMed  CAS  Google Scholar 

  • Yang F, Zhang L, Li J, Huang J, Wen R, Ma L, Zhou D, Li L (2010) Trichostatin A and 5-azacytidine both cause an increase in global histone H4 acetylation and a decrease in global DNA and H3K9 methylation during mitosis in maize. BMC Plant Biol 10:178

    PubMed  Google Scholar 

  • Zeitlin SG, Shelby RD, Sullivan KF (2001) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155:1147–1157

    PubMed  CAS  Google Scholar 

  • Zemach A, Li Y, Ben-Meir H, Oliva M, Mosquna A, Kiss V, Avivi Y, Ohad N, Grafi G (2006) Different domains control the localization and mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis nuclei. Plant Cell 18:133–145

    PubMed  CAS  Google Scholar 

  • Zhang H, Scofield G, Fobert P, Doonan JH (1996) A nimA-like protein kinase transcript is highly expressed in meristems of Antirrhinum majus. J Microsc 181:186–194

    PubMed  CAS  Google Scholar 

  • Zhang XL, Li XX, Marshall JB, Zhong CX, Dawe RK (2005) Phosphoserines on maize CENTROMERIC HISTONE H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation. Plant Cell 17:572–583

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.H. is supported by the DFG (SFB 648). We apologize to all our colleagues who contributed to the field but could not be cited due to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Houben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Houben, A., Demidov, D., Karimi-Ashtiyani, R. (2013). Epigenetic Control of Cell Division. In: Grafi, G., Ohad, N. (eds) Epigenetic Memory and Control in Plants. Signaling and Communication in Plants, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35227-0_8

Download citation

Publish with us

Policies and ethics