Skip to main content

Hard Titanium and Zirconium Boride Alloys and Items Manufactured from Them by SHS Compaction

  • Chapter
  • First Online:
Production of Advanced Materials by Methods of Self-Propagating High-Temperature Synthesis

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 825 Accesses

Abstract

A new class of titanium and zirconium boride-based hard alloys is considered. The physicochemical and physical-mechanical properties of titanium monoboride (TiB) are determined for the first time. Laboratory and factory testing demonstrated that the TiB–Ti alloy exhibited superior service properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiffer R, Benezovskii F (1968) Hard materials. Mettalurgiya, Moscow

    Google Scholar 

  2. Merzhanov AG, Mukasyan AS (2007) Solid-flame combustion. Torus Press, Moscow

    Google Scholar 

  3. McCauley JW, Puszynski JA (2008) Historical perspective and contribution of U.S. researchers into the field of self-propagating high-temperature synthesis (SHS)/combustion synthesis (CS): personal reflections. Int J SHS 17:58–75

    CAS  Google Scholar 

  4. Zhang X-H, Han J-C, He X-D, Yan Ch, Wang B-L, Xu Q (2005) Ablation-resistance of combustion synthesis TiB2–Cu cermet. J Amer Chem Soc 88:89–94

    CAS  Google Scholar 

  5. Xu Q, Zhang X, Han J, He X, Kvanin VL (2003) Combustion synthesis and densification of titanium boride–copper matrix composite. Mater Lett 57:4439–4444

    Article  CAS  Google Scholar 

  6. Zhang J, Fu Zh, Wang W (2005) Fabrication of titanium boride–Cu composite by self-propagating high-temperature synthesis plus quick press. J Mater Sci Technol 21:841–845

    Article  CAS  Google Scholar 

  7. Meyers MA, Olesky EA, Ma J, Jamet M (2001) Combustion synthesis/densification of an Al2O3–TiB2 composite. Mater Sci Eng A311:83–99

    CAS  Google Scholar 

  8. Khanra AK, Pathak LC, Mishra SK, Godkhindi MM (2004) Effect of NaCl on t he synthesis of TiB2 powder by self-propagating high-temperature synthesis technique. Mater Lett 58:733–738

    Article  CAS  Google Scholar 

  9. Merzhanov AG, Borovinskaya IP, Pityulin AN et al (1981) Direct SHS production of tungsten-free hard alloys and disposable inserts STIM. Informational report, Chernogolovka

    Google Scholar 

  10. Merzhanov AG, Borovinskaya IP, Yukhvid VI, Ratnikov VI (1981) New methods for production of heat-resistant materials. Scientific fundamentals of materials science, Nauka, Moscow

    Google Scholar 

  11. Merzhanov AG, Borovinskaya IP, Yukhvid VI (1980) Self-propagating high-temperature synthesis of cast refractory inorganic compounds. Dolk Akad Nauk USSR 255:120–124

    CAS  Google Scholar 

  12. Merzhanov AG, Borovinskaya IP, Shteinberg AS, Shcherbakov VA, Tavadze GF, Tavadze FN (1984) Phase-formation at combustion in the Ti–B system. Soobshcheniya AS GSSR 116:374–375

    Google Scholar 

  13. Khvadagiani AI, Shcherbakov VA, Tavadze GF et al (1989) Study of combustion products for the Zr–B system. Soobshcheniya AS GSSR 135:589–591

    CAS  Google Scholar 

  14. Khvadagiani AI, Shcherbakov VA, Tavadze GF, et al (1984) Properties of alloys on the basis of titanium and zirconium borides. Preprint, Branch of the Institute fo Chemical Physics AS USSR, Chernogolovka

    Google Scholar 

  15. Khvadagiani AI, Shcherbakov VA, Vishnyakova GA, Shteinberg AS, Tavadze GF, Borovinskaya IP, Merzhanov AG, Tavadze FN (1985) Production of hard alloys on the basis of titanium and zirconium borides by SHS compaction method. Preprint, Branch of the Institute fo Chemical Physics AS USSR, Chernogolovka

    Google Scholar 

  16. Merzhanov AG, Borovinskaya IP, Shteinberg AS, Shcherbakov VA, Tavadze FN, Tavadze GF, Khvadaggiani AI (1988) Tungsten-free heat-resistant hard alloy. Inventor’s certificate of the USSR 1412349

    Google Scholar 

  17. Khvadagiani AI, Sakhvadze DV, Tavadze GF, et al (1989) Method for the manufacture of hard-alloy material on the basis of titanium borides. Inventor’s certificate of the USSR 1547178

    Google Scholar 

  18. Andreev VN, Belousova LA (1983) Cutting tools made of tungsten-free hard alloy STIM-3B. Machin tools 2:18–20

    Google Scholar 

  19. Samsonov GV, Portnoi KI (1961) Alloys on the basis of refractory compounds. Oborongiz, Moscow

    Google Scholar 

  20. Pearson WB (1972) Crystal chemistry and physics of metals and alloys. Wiley, New York

    Google Scholar 

  21. Merzhanov AG (1976) Self-propagating high-temperature synthesis of refractory compounds. Vestnik AS USSR 10:76–84

    Google Scholar 

  22. Merzhanov AG (1976) Combustion in chemical engineering. Preprint, Branch of the Institute of Chemical Physics AS USSR, Chernogolovka

    Google Scholar 

  23. Novikov NP, Borovinskaya IP, Merzhanov AG (1975) Thermodynamic analysis of SHS. In: Merzhanov AG (ed) Combustion processes in chemical engineering and metallurgy. AS USSR, Chernogolovka

    Google Scholar 

  24. Novikov NP, Borovinskaya IP, Merzhanov AG (1974) Dependence of the product composition and combustion temperature in the metal–B systems on the reagent ratio. Fiz Gorenya Vzryva 2:201–206

    Google Scholar 

  25. Borovinskaya IP, Merzhanov AG, Novikov NP, Filonenko AK (1974) Gasless combustion of mixtures of transition metal powders with boron. Fiz Goreniya Vzryva 10:4–15

    CAS  Google Scholar 

  26. Borovinskaya IP, Novikov NP (1975) Synthesis of borides from oxides in self-propagating mode. In: Merzhanov AG (ed) Combustion processes in chemical engineering and metallurgy. AS USSR, Chernogolovka

    Google Scholar 

  27. Akopyan AG, Dolukhanyan SK, Borovinskaya IP (1978) Interaction of Ti, B and C in the combustion mode. Fiz Goreniya Vzryva 2:70–75

    Google Scholar 

  28. Merzhanov AG, Borovinskaya IP, Novikov NP (1974) Synthesis of borides in the combustion mode. Report, Branch of the Institute of Chemical Physics AS USSR, Chernogolovka

    Google Scholar 

  29. Mamyan SS, Merzhanov AG (1978) Thermodynamic analysis of the possibility to obtain diborides of some metals from elements, oxides and halogenides in the combustion mode. Preprint, Branch of the Institute of Chemical Physics AS USSR, Chernogolovka

    Google Scholar 

  30. Merzhanov AG (1978) Patterns and mechanism of combustion of pyrotechnical mixtures of Ti and B. Preprint, Branch of the Institute of Chemical Physics AS USSR, Chernogolovka

    Google Scholar 

  31. Shkiro VM, Borovinskaya IP (1976) Capillary spreading of liquid metal at combustion of the Ti–C mixture. Fiz Goreniya Vzryva 6:945–948

    Google Scholar 

  32. Palty A, Margolin H, Nielsen J (1954) Titanium–nitrogen and titanium–boron systems. Trans Amer Soc Metals 46:312–315

    CAS  Google Scholar 

  33. Kiessling R (1949) The binary system zirconium–boron. Acta Chem Scand 3:90–94

    Article  CAS  Google Scholar 

  34. Glaser FW (1952) Contribution to the metal—carbon—boron diagram of systems composed of various elements and systems. Trans AIME 194:391–396

    Google Scholar 

  35. Glaser FW, Post B (1953) Phase diagram zirconium–boron. Trans AIME 197:1117–1118

    Google Scholar 

  36. Dereseevich G (1961) Mechanics of granular medium. Problemy mekhaniki 3:91–152

    Google Scholar 

  37. Scott GD (1960) Packing of spheres. Nature 188:908–909

    Article  Google Scholar 

  38. Bernal J, Finney J (1967) Random packing of spheres in rigid containers. Nature 214:265–266

    Article  Google Scholar 

  39. Bennet C (1972) Serially amorphous aggregates of hard spheres. J Add Phys 43:2727–2734

    Google Scholar 

  40. Levine M, Ghernich I (1965) A numerical model of random packing of spheres. Nature 208:68–69

    Article  Google Scholar 

  41. Bernal JD (1962) On the role of geometric factors in the structure of matter. Kristallographiya 7:507–519

    CAS  Google Scholar 

  42. Rutgers R (1962) Packing of spheres. Nature 193:465–466

    Article  Google Scholar 

  43. Laves F (1956) Crystal structure and atomic size. American Society for Metals, Cleveland

    Google Scholar 

  44. Polukhin V, Vatolin N (1985) Modeling of amorphous metals. Nauka, Moscow

    Google Scholar 

  45. Bernal JD (1961) Geometrical approach to the description of the structure of liquids. Usp Khim 60:1312–1323

    Google Scholar 

  46. Matzke EB (1950) In the twinkle of an eye. Bull Torrey Botanical club 77:222–227

    Article  Google Scholar 

  47. Khantadze DV, Topuridze NI (1977) Mechanism of densification of two-component granular media modeled by using spherical particles. Inzh-Fiz Zhurn 33:120–125

    Google Scholar 

  48. Shatt V (1983) Powder metallurgy, sintered and composite materials. Metallurgiya, Moscow

    Google Scholar 

  49. Khantadze DV, Topuridze NI (1990) Application of the theory of arrangements for the description of the short-range order in irregular structures composied of particles of different sizes. In: Giorgidze E (ed) Materials science and corrosion of metals. Metsniereba, Tbilisi

    Google Scholar 

  50. Khantadze DV (2003) Effect of particle size on excess thermodynamic functions of mixing. Proceeding of VIII international scientific-technical conference on welding, Metallurgy and Related Technologies, Tbilisi

    Google Scholar 

  51. Khantadze DV (2009) Structural models and properties of metal melts. Forma, Tbilisi

    Google Scholar 

  52. Tavadze GF, Khantadze DV (2010) Thermochemical grounds for the effect of the charge component particle size on SHS. Georgian Eng News 3:86–89

    Google Scholar 

  53. Kubashevsky O, Olkokk SB (1984) Metallurgical thermochemistry. Metallurgiya, Moscow

    Google Scholar 

  54. Shatt V (1983) Powder metallurgy, sintered and composite materials. Metallurgiya, Moscow

    Google Scholar 

  55. Samsonov GV, Markovsky LYA, Zhigach AF, Vlyashko MG (1960) Boron, its compounds and alloys. ASUSSR Publishers, Kiev

    Google Scholar 

  56. Khvadagiani AI, Tavadze FG, Shcherbakov VA, Shteinberg AS et al (1986) Mechanical properties of hard alloys on the basis of Ti and Zr borides. Soobshcheniya ASGSSR 136:31–34

    Google Scholar 

  57. Samsonov GV, Golubeva NK (1956) Zhurn Fiz Khim 30:1258–1259

    CAS  Google Scholar 

  58. Voitovich RF, Golovko EI (1980) High-temperature oxidation of metals and alloys. Naukova Dumka, Kiev

    Google Scholar 

  59. Pilankevich AI, Palyan SV, Lugowskaya ES (1982) Structural-morphological studies of titanium diboride at its oxidation in various media. Poroshkovaya Metallurgiya 7:27–31

    Google Scholar 

  60. Akimov GV (1945) Theory and methods for the study of corrosion of metals. AS USSR publishers, Moscow

    Google Scholar 

  61. Samsonov GV (1976) Properties of elements. Metallurgiya, Moscow

    Google Scholar 

  62. L’vov SI, Nemchenko VF, Samsonov GV (1962) The effect of atoms of non-metals on electric properties of refractory compounds of transition metals. Powder Metall 4:52–60

    Google Scholar 

  63. Samsonov GV, Naumenko VYA, Okhramchuk LI et al (1972) Properties of refractory compounds. AS USSR Publishers, Kiev

    Google Scholar 

  64. Odolevskii VI (1951) Calculation of generalized conductivity of heterogeneous systems. Zhurn Tekh Fiz 21:667–685

    Google Scholar 

  65. Dul’nev GI, Zarichnyan YuP (1974) Thermal conductivity of mixtures and composite materials. Energiya, Leningrad

    Google Scholar 

  66. Shchipkov NV, Levashov EA, Pityyulin AN, Pronin AA (1989) Thermodynamic analysis of STIM alloys obtained by SHS method. In: Merzhanov AG, Khavskii NN (eds) Structure, properties and production methods of metal systems and cermets. MISIS Publishers, Moscow

    Google Scholar 

  67. Samsonov GV (1963) Refractory compounds. Metallurgizdat, Moscow

    Google Scholar 

  68. Filippov GV (1981) Cutting tools. Mashinostroenie, Leningrad

    Google Scholar 

  69. Savitskii EM, Burkhanov GS (1971) Physical metallurgy of refractory and rare metals. Nauka, Moscow

    Google Scholar 

  70. Berniker EI (1966) Shrink-fitting in mechanical engineering. Mashinostroenie, Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Shteinberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Shteinberg, A.S., Tavadze, G. (2013). Hard Titanium and Zirconium Boride Alloys and Items Manufactured from Them by SHS Compaction. In: Production of Advanced Materials by Methods of Self-Propagating High-Temperature Synthesis. SpringerBriefs in Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35205-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35205-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35204-1

  • Online ISBN: 978-3-642-35205-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics