Skip to main content

Biologically Inspired Architecture for Spatiotemporal Learning of Mobile Robots

  • Conference paper
  • 4049 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 330))

Abstract

Biological systems can adapt excellently to the demands of a dynamic world and changing tasks. What kind of information processing and reasoning do they use? There are numerous studies in psychology, cognitive neuroscience and artificial intelligence which complement each other and help in getting a better understanding of this riddle. Our paper presents a biologically inspired architecture for a spatiotemporal learning system. Multiple interconnected memory structures are used to incorporate different learning paradigms. Concurrent inherent learning processes complete the functionality of corresponding memory types. Our architecture has been evaluated in the context of mobile rescue robots: The task consists of searching objects while navigating in an unknown maze.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Institute of Standards and Technology: Performance Metrics and Test Arenas for Autonomous Mobile Robots, http://www.nist.gov/el/isd/testarenas

  2. Pellenz, J., Gossow, D., Paulus, D.: Robbie: A Fully Autonomous Robot for Robo Cup Rescue. Advanced Robotics 23(9), 1159–1177 (2009)

    Article  Google Scholar 

  3. Mendonca, M., Ramos de Aruda, L., Neves, F.: Autonomous Navigation System UsingEvent Driven-Fuzzy Cognitive Maps. Appl. Intelligence 37(2), 175–188 (2012)

    Article  Google Scholar 

  4. Zou, A., Hou, Z., Fu, S., Tan, M.: Neural Networks for Mobile Robot Navigation: A Survey. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 1218–1226. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. White, N.M.: Multiple memory systems. Scholarpedia 2(7), 2663 (2007)

    Article  Google Scholar 

  6. Niv, Y.: Reinforcement Learning in the Brain. J. Math. Psychology 53(3), 139–154 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Butz, M.V., Sigaud, O., Gérard, P.: Internal Models and Anticipations in Adaptive Learning Systems. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS (LNAI), vol. 2684, pp. 86–109. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Laird, J.E., Rosenbloom, P.S., Newell, A.: Chunking in SOAR: The Anatomy of a General Learning Mechanism. Machine Learning 1, 11–46 (1986)

    Google Scholar 

  9. Anderson, J., Lebiere, C.: The Atomic Components of Thought. Lawrence Erlbaum (1998)

    Google Scholar 

  10. Rolls, E.T.: Memory, Attention, and Decision-making: A Unifying Computational Neuroscience Approach. Oxford University Press, Oxford (2008)

    Google Scholar 

  11. Hasselmo, M.E.: What is the Function of Hippocampal Theta Rhythm?—Linking Behavioral Data to Phasic Properties of Field. Hippocampus 15(7), 936–949 (2005)

    Article  Google Scholar 

  12. Sato, N., Yamaguchi, Y.: Simulation of Human Episodic Memory by Using a Computational Model of the Hippocampus. In: Adv. Artificial Intelligence (2010)

    Google Scholar 

  13. Nuxoll, A.M.: Enhancing Intelligent Agents With Episodic Memory. PhD thesis, University of Michigan (2007)

    Google Scholar 

  14. Brom, C., Pešková, K., Lukavský, J.: What Does Your Actor Remember? Towards Characters with a Full Episodic Memory. In: Cavazza, M., Donikian, S. (eds.) ICVS-VirtStory 2007. LNCS, vol. 4871, pp. 89–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Tecuci: A Generic Memory Module for Events, PhD thesis, University of Texas in Austin (2007)

    Google Scholar 

  16. ROS, http://www.ros.org

  17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  18. Tolman, E.: Cognitive Maps in Rats and Men. Psych. Review 55, 189–208 (1948)

    Article  Google Scholar 

  19. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. thesis, University of California, Berkeley (2002)

    Google Scholar 

  20. Jensen, F.V.: An Introduction To Bayesian Networks. UCL Press (1996)

    Google Scholar 

  21. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting Structure in Policy Construction. In: Proc. IJCAI, pp. 1104–1111 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kleinmann, L., Mertsching, B. (2012). Biologically Inspired Architecture for Spatiotemporal Learning of Mobile Robots. In: Ponnambalam, S.G., Parkkinen, J., Ramanathan, K.C. (eds) Trends in Intelligent Robotics, Automation, and Manufacturing. IRAM 2012. Communications in Computer and Information Science, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35197-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35197-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35196-9

  • Online ISBN: 978-3-642-35197-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics